a2 United States Patent

US009081875B2

(10) Patent No.: US 9,081,875 B2

James et al. (45) Date of Patent: Jul. 14, 2015
(54) SYSTEMS AND METHODS FOR (51) Imt.CL
ORGANIZING CLINICAL DATA USING GOG6F 17/30 (2006.01)
MODELS AND FRAMES GOGF 19/00 (2011.01)
)) (52) US.CL
(71) Applicant: General Electric Company, CPC ..o, GOGF 19/32 (2013.01); GOGF 19/322
Schenectady, NY (US) (2013.01)
58) Field of Classification S h
(72) Inventors: Alan Ferris James, Salt Lake City, UT (58) Field of Classification Scarc
] . It Lake Ci USPC 707/608, 706, 713,763, 758, 781, 813
SJTS %’U];;Wld Edwards, Salt Lake City. See application file for complete search history.
(56) References Cited
(73) Assignee: General Electric Company,
Schenectady, NY (US) U.S. PATENT DOCUMENTS
® e : : : : 8,671,105 B2* 3/2014 Reddyetal. 707/763
(*) Notice: Sutbjeft. o e (gsglalmeé’. thte Ilermgftgl; 2002/0091680 Al* 7/2002 Hatzis etal. .. 707/3
patent 15 extended or adjusted under 2010/0235285 Al* 9/2010 Hoffberg 705/75
U.S.C. 154(b) by 42 days. 2012/0059840 Al* 3/2012 Reddyetal. 707/763
(21) Appl. No.: 13/723,864 * cited by examiner
(22) Filed: Dec. 21, 2012 Primary Examiner — Sana Al Hashemi
57 ABSTRACT
(65) Prior Publication Data ©7) . . .
Certain examples provide systems and methods to organize
US 2013/0173657 Al Jul. 4, 2013 clinical data using detailed clinical models and frames. An
example system includes a clinical element query processor
to query data organized according to one or more detailed
query g 2
Related U.S. Application Data clinical models. The clinical element processor is to form a
(60) Provisional application No. 61/582,016, filed on Dec. frame from instances of the queried data. The example system

30, 2011, provisional application No. 61/582,033,

61/582,052, filed on Dec. 30, 2011, provisional
application No. 61/582,008, filed on Dec. 30, 2011.

102

HOSPITAL

ONCOLOGY 100
DEPARTMENT Pﬁ%s 128
104 - —

CARBIOLOGY
DEPARTMENT

RIS
112 124

ENTERPRISE CLINICAL

EMERGENCY LAB INFO. INFORMATION
ROOM SYSTEM SYSTEM (ECIS)
108 114
126

=3
B

EMR
s

OUTPATIENT CLINIG

LAB INFO. 130 I

SYSTEM
120

PACS
122

also includes a transformer to receive the frame and operate
on the data in the frame to transform the frame into a com-
ponent to be used as a part of a clinical application.

17 Claims, 21 Drawing Sheets

Terminology

Names of lap tests

U.S. Patent

102
~

Jul. 14, 2015

HOSPITAL
ONCOLOGY
DEPARTMENT PflCQS
104
CARDIOLOGY RIS
DEPARTMENT 112
106 —
EMERGENCY LAB INFO.
ROOM SYSTEM
108 114
EMR

116

OUTPATIENT CLINIC

LAB INFO.
SYSTEM P1A2%S
120 -

Sheet 1 of 21 US 9,081,875 B2
4100
128
124
Y
ENTERPRISE CLINICAL
INFORMATION
SYSTEM (ECIS)
126
A
130

FIG.

U.S. Patent Jul. 14, 2015 Sheet 2 of 21 US 9,081,875 B2

FIG. 2

Bompig

210

U.S. Patent Jul. 14, 2015 Sheet 3 of 21 US 9,081,875 B2

FIG. 3

U.S. Patent Jul. 14, 2015 Sheet 4 of 21 US 9,081,875 B2

FIG. 4

400

U.S. Patent Jul. 14, 2015 Sheet 5 of 21 US 9,081,875 B2

FIG. 5

Content
Hem
510

- Vo
%ﬁﬂ?}z{?ﬁ% Vi Rovaulsn J e

\ /

5

U.S. Patent Jul. 14, 2015 Sheet 6 of 21 US 9,081,875 B2

FIG. 6

U.S. Patent Jul. 14, 2015 Sheet 7 of 21 US 9,081,875 B2

FIG 7

700

U.S. Patent Jul. 14, 2015 Sheet 8 of 21 US 9,081,875 B2

FIG 8

; - Content , Content
Pockage Frame

b
e
L B

b e
i

G Ehag
L St

U.S. Patent Jul. 14, 2015 Sheet 9 of 21 US 9,081,875 B2

FIG. 9
Highest
Precedence
Nomespoce B
| Nomespocea
Lowest

Precedence

U.S. Patent

Jul. 14, 2015

Sheet 10 of 21 US 9,081,875 B2

2 032

3
217 1033 FIG. 10

U.S. Patent Jul. 14, 2015 Sheet 11 of 21 US 9,081,875 B2

. s

FIG. 11

U.S. Patent Jul. 14, 2015 Sheet 12 of 21 US 9,081,875 B2

U.S. Patent Jul. 14, 2015 Sheet 13 of 21 US 9,081,875 B2

Presentation
1310

FIG. 13

1331
132
ViV,
CBé

Lab Collection 1320

U.S. Patent Jul. 14, 2015 Sheet 14 of 21 US 9,081,875 B2

“TFrame [Instance| <21

1440

' . 1400
Transform(\/ 1400
1450

! Fig. 14
Form View 9

1460

ltem Tree View ETL\

U.S. Patent Jul. 14, 2015 Sheet 15 of 21 US 9,081,875 B2

1300

Eppleation

FIG. 18

U.S. Patent Jul. 14, 2015 Sheet 16 of 21 US 9,081,875 B2

Bpriioston W

FIG. 16

U.S. Patent Jul. 14, 2015 Sheet 17 of 21 US 9,081,875 B2

1700

Receive results returned by a query. /\/1710

A\ 4

Apply a transform to the query /\/1720
results to form a query result set.

h 4

Account for relationships between /\/1730
objects in the query result set.

A 4

Provide the query result set to a /\/1740
clinical application.

FI1G. 17

U.S. Patent Jul. 14, 2015 Sheet 18 of 21 US 9,081,875 B2

1800

Accept one or more query criteria. /\/1 810

A4

Form a query based on the one or /\/1 820
more query criteria and model
information used to represent the
data being queried.

A 4

Apply the query to a plurality of /\/1 830
available objects associated with the
data being queried.

A 4

Account for relationships between /\/1 840
objects to generate a query result set.

A 4

Provide the query result set. /\/1 850

FIG 18

U.S. Patent Jul. 14, 2015 Sheet 19 of 21 US 9,081,875 B2

1900

\ Query data organized according to
7\ 1910

one or more detailed clinical models.

A\ 4

Form a frame from instances of /\/1920
queried data.

4

Operate on data in the frame to /\/1930
transform the frame into a
component for a clinical application.

FIG 19

U.S. Patent Jul. 14, 2015 Sheet 20 of 21 US 9,081,875 B2

2000

Receive one or more query criterion. /\/2010

A4

Generate a query result based on the /\/2020
one or more query criterion.

A

Generate a transform to be applied to /\/2030
the query result.

A 4

Apply the transform to the query /\/2040
result to generate a formlet.

FIG. 20

U.S. Patent

HAMNDOM
ACCESS
MEMORY

I 2120

READ ONLY
MEMORY

s 2112

PROCESSOR

LOCAL
MEMORY

|
|
|
|
|
|
|
Is
|
|
|
|
|
|

Jul. 14, 2015

Sheet 21 of 21

MASS

STORAGE

2126

INPLT
DEVICE(S)

'

. 2

INTERFACE

] 2128

OUTPUT
DEVICE(S)

FIG. 21

\ INSTRUCTIONS /

124

NETWORK <

US 9,081,875 B2

US 9,081,875 B2

1
SYSTEMS AND METHODS FOR
ORGANIZING CLINICAL DATA USING
MODELS AND FRAMES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This patent claims priority to U.S. Provisional Application
Ser. No. 61/582,008, U.S. Provisional Application Ser. No.
61/582,016, U.S. Provisional Application Ser. No. 61/582,
033, and U.S. Provisional Application Ser. No. 61/582,052,
all filed on Dec. 30, 2011, each of which is incorporated by
reference herein in its entirety.

FIELD

The present invention generally relates to healthcare infor-
mation systems and, more particularly, to methods and appa-
ratus for content-driven systems and methods.

BACKGROUND

Healthcare environments, such as hospitals and clinics,
typically include information systems (e.g., electronic medi-
cal record (EMR) systems, lab information systems, outpa-
tient and inpatient systems, hospital information systems
(HIS), radiology information systems (RIS), storage systems,
picture archiving and communication systems (PACS), etc.)
to manage clinical information such as, for example, patient
medical histories, imaging data, test results, diagnosis infor-
mation, management information, financial information, and/
or scheduling information. These healthcare information sys-
tems are used to implement different types of workflows in
which clinical information is generated, updated, augmented,
and/or otherwise processed for one or more purposes.

BRIEF DESCRIPTION

Certain examples provide a system including a clinical
element query processor and a transformer. The example
clinical element query processor is to query data organized
according to one or more detailed clinical models. The
example clinical element processor is to form a frame from
instances of the queried data. The example transformer is to
receive the frame and operate on the data in the frame to
transform the frame into a component to be used as a part of
a clinical application.

Certain examples provide a computer readable storage
medium including computer program code to be executed by
a processor, the computer program code, when executed, to
implement a system. The example system includes a clinical
element query processor and a transformer. The example
clinical element query processor is to query data organized
according to one or more detailed clinical models. The
example clinical element processor is to form a frame from
instances of the queried data. The example transformer is to
receive the frame and operate on the data in the frame to
transform the frame into a component to be used as a part of
a clinical application.

Certain examples provide a method to organize clinical
data using models and frames. The example method includes
querying data organized according to one or more detailed
clinical models. The example method includes forming a
frame from instances of the queried data. The example
method includes operating on the data in the frame to trans-
form the frame into a component to be used as a part of a
clinical application.

15

20

25

35

40

45

55

2
BRIEF DESCRIPTION OF SEVERAL VIEWS OF
THE DRAWINGS

FIG. 1 is a block diagram of an example healthcare envi-
ronment in which the example methods, apparatus, systems,
and/or articles of manufacture disclosed herein for clinical
content-based healthcare may be implemented.

FIG. 2 illustrates an example clinical knowledge system
providing an aggregation of data from multiple sources.

FIG. 3 illustrates an example interdependence of content
types.

FIG. 4 illustrates an example hierarchy of content, associ-
ated data models, and terminology.

FIG. 5 shows an example root content item having one or
more content variants associated with one or more context
variants.

FIG. 6 provides an example multi-patient view (MPV)
made up of a plurality of formlets and a frameset.

FIG. 7 illustrates an example content management process.

FIG. 8 shows an example deployment including a plurality
of models in a content package to be deployed to create a
content frame.

FIG. 9 provides an example of namespaces A, B, and C
including various content items (Cls).

FIG. 10 illustrates an example MPV application including
a plurality of patient and associated object instances.

FIG. 11 depicts an example frameset including a plurality
of frames including one or more objects.

FIG. 12 illustrates an example formlet including a plurality
of frames.

FIG. 13 depicts an example presentation component of a
formlet including a plurality of snippets.

FIG. 14 illustrates an example system in which one or more
instances are provided for a frame.

FIG. 15 depicts an example client-server system configu-
ration to generate an application for execution via the client.

FIG. 16 illustrates an example client-server system con-
figuration to generate an application for execution via the
client.

FIG. 17 illustrates a flow diagram of an example method to
provide model-specific query results to an application.

FIG. 18 illustrates a flow diagram of an example method to
express model-specific queries.

FIG. 19 illustrates a flow diagram of an example method to
organize clinical data using models and frames.

FIG. 20 illustrates a flow diagram of an example method to
generate a formlet for a clinical application.

FIG. 21is ablock diagram of an example computer capable
of executing instructions to implement the example systems
and methods described above.

The foregoing summary, as well as the following detailed
description of certain embodiments of the present invention,
will be better understood when read in conjunction with the
appended drawings. For the purpose of illustrating the inven-
tion, certain embodiments are shown in the drawings. It
should be understood, however, that the present invention is
not limited to the arrangements and instrumentality shown in
the attached drawings.

DETAILED DESCRIPTION OF CERTAIN
EXAMPLES

Although the following discloses example methods, sys-
tems, articles of manufacture, and apparatus including,
among other components, software executed on hardware, it
should be noted that such methods and apparatus are merely
illustrative and should not be considered as limiting. For

US 9,081,875 B2

3

example, it is contemplated that any or all of these hardware
and software components could be embodied exclusively in
hardware, exclusively in software, exclusively in firmware, or
in any combination of hardware, software, and/or firmware.
Accordingly, while the following describes example meth-
ods, systems, articles of manufacture, and apparatus, the
examples provided are not the only way to implement such
methods, systems, articles of manufacture, and apparatus.

When any of the appended claims are read to cover a purely
software and/or firmware implementation, in an embodiment,
at least one of the elements is hereby expressly defined to
include a tangible medium such as a memory, DVD, CD,
Blu-ray, etc., storing the software and/or firmware.

1. Clinical Models

Detailed clinical models (DCMs), such as Clinical Ele-
ment Models (CEMs) developed by Intermountain Health-
care, can be utilized as the basis to model, store, and/or
retrieve dynamically changing clinical concepts and informa-
tion.

A DCM, such as CEM, is a data structure that represents a
unit of medical information, including its interrelated com-
ponents. DCMs enable content-driven systems development
so that healthcare delivery can be documented consistently,
measured reliably, and improved continuously over time and
across patients, providers, care settings, and applications.

Entities of healthcare enterprises operate according to a
plurality of clinical workflows. Clinical workflows are typi-
cally defined to include one or more steps or actions to be
taken in response to one or more events and/or according to a
schedule. Events may include receiving a healthcare message
associated with one or more aspects of a clinical record,
opening a record(s) for new patient(s), receiving a transferred
patient, and/or any other instance and/or situation that
requires or dictates responsive action or processing. The
actions or steps of a clinical workflow may include placing an
order for one or more clinical tests, scheduling a procedure,
requesting certain information to supplement a received
healthcare record, retrieving additional information associ-
ated with a patient, providing instructions to a patient and/or
a healthcare practitioner associated with the treatment of the
patient, and/or any other action useful in processing health-
care information. The defined clinical workflows can include
manual actions or steps to be taken by, for example, an admin-
istrator or practitioner, electronic actions or steps to be taken
by a system or device, and/or a combination of manual and
electronic action(s) or step(s). While one entity of a health-
care enterprise may define a clinical workflow for a certain
event in a first manner, a second entity of the healthcare
enterprise may define a clinical workflow of that event in a
second, different manner. In other words, different healthcare
entities may treat or respond to the same event or circum-
stance in different fashions. Differences in workflow
approaches may arise from varying preferences, capabilities,
requirements or obligations, standards, protocols, etc. among
the different healthcare entities.

However, the entities of a healthcare enterprise and/or enti-
ties from separate healthcare enterprises sometimes operate
within a broader, interdependent information system, which
hinder the ability of entities to customize clinical workflows.
For example, the information system to which a healthcare
entity belongs may place restrictions on changes to workflow
applications or programs. Moreover, because some health-
care entities operate using systems, programs, devices, etc.
from varying manufactures, software providers, etc., a lack of
interoperability between the systems, programs, devices, etc.
of'each healthcare entity prohibits many customizations from
realization. As a consequence of these example factors as well

10

15

20

25

30

35

40

45

50

55

60

65

4

as additional or alternative factors, healthcare entities that
desire customized clinical workflows are typically required to
request such customizations from the manufacturers, soft-
ware providers, etc. Furthermore, for such customizations to
implemented or integrated into a healthcare information sys-
tem, a wide range of system-interrupting updates or re-re-
leases occur within the information systems.

Certain examples provide a clinical knowledge platform
that enables healthcare institutions to improve performance,
reduce cost, touch more people, and deliver better quality
globally. In certain examples, the clinical knowledge plat-
form enables healthcare delivery organizations to improve
performance against their quality targets, resulting in better
patient care at a low, appropriate cost.

Certain examples facilitate better control over data. For
example, certain example systems and methods enable care
providers to access real-time patient information from exist-
ing healthcare information technology (IT) systems together
in one location and compare this information against evi-
dence-based best practices.

Certain examples facilitate better control over process. For
example, certain example systems and methods provide con-
dition- and role-specific patient views enable a user to priori-
tize and coordinate care efforts with an institution’s agreed
upon practice standards and to more effectively apply
resources.

Certain examples facilitate better control over outcomes.
For example, certain example systems and methods provide
patient dashboards that highlight variations from desired
practice standards and enable care providers to identify most
critical measures within the context of performance-based
care.

Certain examples leverage existing IT investments to stan-
dardize and centralize data across an organization. In certain
examples, this includes accessing multiple systems from a
single location, while allowing greater data consistency
across the systems and users.

In certain examples, an advanced Service-Oriented Archi-
tecture (SOA) with a modern technology stack helps provide
robust interoperability, reliability, and performance. The
example SOA includes a three-fold interoperability strategy
including a central repository (e.g., a central repository built
from Health Level Seven (HL7) transactions), services for
working in federated environments, and visual integration
with third-party applications. Certain examples provide por-
table content enabling plug *n play content exchange among
healthcare organizations. A standardized vocabulary using
common standards (e.g., LOINC, SNOMED CT, RxNorm,
FDB, ICD-9, ICD-10, etc.) is used for interoperability, for
example. Certain examples provide an intuitive user interface
to help minimize end-user training Certain examples facili-
tate user-initiated launching of third-party applications
directly from a desktop interface to help provide a seamless
workflow by sharing user, patient, and/or other contexts. Cer-
tain examples provide real-time (or at least substantially real
time assuming some system delay) patient data from one or
more IT systems and facilitate comparison(s) against evi-
dence-based best practices. Certain examples provide one or
more dashboards for specific sets of patients. Dashboard(s)
can be based on condition, role, and/or other criteria to indi-
cate variation(s) from a desired practice, for example.

Generally, the example methods, apparatus, systems, and/
or articles of manufacture disclosed herein enable healthcare
entities of an enterprise clinical information system (ECIS) to
dynamically customize one or more clinical workflows.
Among other functions and/or benefits, the ECIS supports
healthcare practitioners in decision making processes by

US 9,081,875 B2

5

aggregating healthcare information across disparate enter-
prises and/or entities thereot and referencing collection(s) of
data (e.g., guidelines, recommendations related treatment
and/or diagnosis, studies, histories, etc.) to automatically
generate supportive information to be communicated to one
or more healthcare practitioners related to the aggregated
healthcare information. While each entity operates in connec-
tion with the ECIS that is administered by a provider thereof,
the examples disclosed herein enable each entity of operating
in connection with the ECIS to originate and/or modify one or
more clinical workflows without relying on the provider of
the ECIS to do so on behalf of the entity. In other words,
although a healthcare entity is part of the ECIS and exchanges
data with and via the ECIS, that entity can independently
create and/or manage its clinical workflows using the
examples disclosed herein. Furthermore, the examples dis-
closed herein enable entities of the ECIS to deploy or initiate
the customized workflows without having to reboot or sig-
nificantly interrupt the ECIS and/or the other components,
workflows, etc., thereof. The example methods, apparatus,
systems, and/or articles of manufacture disclosed herein and
the advantages and/or benefits thereof are described in greater
detail below in connection with the figures.

FIG. 1 is a block diagram of an example healthcare envi-
ronment 100 in which the example methods, apparatus, sys-
tems, and/or articles of manufacture disclosed herein for
clinical content-based healthcare may be implemented. The
example healthcare environment 100 of FIG. 1 includes a first
hospital 102 having a plurality of entities operating within
and/or in association with the first hospital 102. In the illus-
trated example, the entities of the first hospital 102 include an
oncology department 104, a cardiology department 106, an
emergency room system 108, a picture archiving and com-
munication system (PACS) 110, a radiology information sys-
tem (RIS) 112, and a laboratory information system (LIS)
114. The oncology department 104 includes cancer-related
healthcare practitioners, staff and the devices or systems that
support oncology practices and treatments. Similarly, the car-
diology department 106 includes cardiology-related health-
care practitioners, staff and the devices and/or systems that
support cardiology practices and treatments. Notably, the
example oncology department 104 of FIG. 1 has specifically
designed clinical workflows to be executed in response to
certain events and/or according to a schedule. At the same
time, the example cardiology department 106 of FIG. 1 has
specifically designed clinical workflows to be executed in
response to certain events and/or according to a schedule that
differ from the clinical workflows of the example oncology
department 104 of FIG. 1. For example, the oncology depart-
ment 104 may execute a first set of actions in response to
receiving a Healthcare Level 7 (HL7) admission-discharge-
transfer (ADT) message, while the cardiology department
106 executes a second set of actions different from the first set
of actions in response to receiving a HL.7 ADT message. Such
differences may also exist between the emergency room 108,
the PACS 110, the RIS 112 and/or the accounting services
114.

Briefly, the emergency room system 108 manages infor-
mation related to the emergency care of patients presenting at
an emergency room of the hospital 102, such as admission
information, observations from emergency examinations of
patients, treatments provided in the emergency room setting,
etc. The PACS 110 stores medical images (e.g., X-rays, scans,
three-dimensional renderings, etc.) as, for example, digital
images in a database or registry. Images are stored in the
PACS 110 by healthcare practitioners (e.g., imaging techni-
cians, physicians, radiologists) after a medical imaging of a

25

40

45

55

6

patient and/or are automatically transmitted from medical
imaging devices to the PACS 110 for storage. The RIS 112
stores data related to radiology practices such as, for example,
radiology reports, messages, warnings, alerts, patient sched-
uling information, patient demographic data, patient tracking
information, and/or physician and patient status monitors, as
well as enables exam order entry (e.g., ordering an x-ray of a
patient) and image and film tracking (e.g., tracking identities
of one or more people that have checked out a film). The lab
information system 114 stores clinical information such as
lab results, test scheduling information, corresponding prac-
titioner(s), and/or other information related to the operation
(s) of one or more labs at the corresponding healthcare facil-
ity. While example types of information are described above
as being stored in certain elements of the hospital 102, dif-
ferent types of healthcare data may be stored in one or more
of the entities 104-114, as the entities 104-114 and the infor-
mation listed above is included herein as non-limiting
examples. Further, the information stored in entities 104-114
may overlap and/or be combined into one or more of the
entities 104-114. Each of the example entities 104-114 of
FIG. 1 interacts with an electronic medical record (EMR)
system 116. Generally, the EMR 116 stores electronic copies
of healthcare records associated with, for example, the hos-
pital 102 and the entities 104-114 thereof.

The example healthcare environment 100 of FIG. 1 also
includes an outpatient clinic 118 as an example of another
healthcare enterprise. The example outpatient clinic 118 of
FIG. 1 includes a lab information system 120 and a PACS 122
that operate similarly to the corresponding entities of the
example hospital 102. The lab information system 120 and
the PACS 122 of the example outpatient clinic 118 operate
according to specifically designed clinical workflows that
differ between each other and the clinical workflows of the
entities 104-114 of the hospital 102. Thus, differences in
clinical workflows can exist between the entities of a health-
care enterprise and between healthcare enterprises in general.

In the illustrated example of FIG. 1, the hospital 102 and
the outpatient clinic 118 are in communication with an ECIS
124 via a network 126, which may be implemented by, for
example, a wireless or wired Wide Area Network (WAN)
such as a private network or the Internet, an intranet, a virtual
private network, a wired or wireless Local Area Network, etc.
More generally, any of the coupling(s) described herein may
be via a network. Additionally or alternatively, the example
hospital 102 and/or the example outpatient clinic 118 are in
communication with the example ECIS 124 via direct or
dedicated transmission mediums 128 and 130.

Generally, the ECIS 124 supports healthcare information
processing implemented by systems, devices, applications,
etc. of healthcare enterprises, such as the hospital 102 and the
outpatient clinic 118. The ECIS 124 is capable of processing
healthcare messages from different entities of healthcare
enterprises (e.g., the entities 104-114 of the hospital 102) that
may generate, process and/or transmit the healthcare mes-
sages differently and/or using different formats, protocols,
policies, terminology, etc. when generating, processing, and/
or transmitting the healthcare messages. Moreover, the
example ECIS 124 of FIG. 1 supports healthcare practitioners
in decision making processes by aggregating healthcare
information across disparate enterprises and/or entities
thereof and referencing collection(s) of data to automatically
generate suggestive and/or definitive data for communication
to one or more healthcare practitioners related to the aggre-
gated healthcare information.

Certain examples provide a library of standardized clinical
content and proven best practices. Over time, this “library” of

US 9,081,875 B2

7

content may expand as healthcare organizations add to their
own content modules. Because the content is standardized it
can be shared and leveraged among organizations using the
library and associated clinical knowledge platform. The
library and platform help enable organizations to share best
practice content. Thus, certain examples provide a clinical
knowledge platform that enables healthcare delivery organi-
zations to improve performance against their quality targets.

In certain examples, a quality dashboard application
enables creation of one or more dashboards based on the
data/content most relevant to an organization at a given period
of time. A clinical knowledge platform brings together real-
time patient data from existing IT systems within an organi-
zation and allows for the comparison of this data against
evidence-based best practices. The example quality dash-
board application leverages the platform to enable personal-
ized “Quality Dashboards” to be created for specific sets of
patients, based on condition, role, and/or other criteria. Varia-
tions from desired practice will be highlighted on each dash-
board, enabling care providers to ensure better clinical out-
comes and enrich patient care.

In this example, the clinical knowledge platform aggre-
gates data from an organization’s existing I'T solutions. These
can be solutions from the same and/or different manufacturer
and/or provider. For example, as long as there is an HL.7 or
Web Services feed, the clinical knowledge platform can uti-
lize the data from an existing solution. The existing IT solu-
tion(s) will continue to operate as they always have, and an
organization can continue to use these solutions separate from
the clinical knowledge platform if they so desire. However,
the clinical knowledge platform and associated application(s)
and/or workflow(s) can help to put organizations in greater
control of their data by aggregating as much data from dis-
parate I'T solutions as possible. FIG. 2 illustrates an example
clinical knowledge system 200 providing an aggregation 210
of data from multiple sources. Aggregated data may include,
for example, medication orders, radiology reports, microbi-
ology, admit/discharge/transfer (ADT) message, lab results,
specific observations, electronic medical record (EMR) data,
etc.

As the different data sources are pulled into a central data
repository, content standardization occurs. It is this “stan-
dardization” that enables content from different IT sources to
be used together. For example, as shown in FIG. 2, an inter-
face 220 provides terminology mapping and standardization
to the aggregated data.

After the content is standardized, clinical decision support
mechanisms can be tied to the content (as illustrated, for
example, by the clinical decision support 230 of the system
200 of FIG. 2). The data and associated clinical decision
support are then stored in a clinical data repository (CDR),
such as CDR 240 of the example system 200. By combining
the aggregated and standardized data with clinical decision
support rules and alerts, the clinical knowledge platform may
provide end-users with an understanding of important ele-
ments to which they should pay attention (and take action on)
within the larger set of data they are considering when caring
for a patient.

Combined data and clinical decision support mechanisms
create valuable content that, when arranged properly, may be
used to improve the quality of care provided. Organizations
can elect to use the application(s) that are provided as a part of
the example clinical knowledge platform and/or may choose
to build their own clinical application(s) on the platform. The
open architecture nature of the platform empowers organiza-
tions to build their own vision, rather than base their vision on
the static/hard coded nature of traditional IT solutions.

10

15

20

25

30

35

40

45

50

55

60

65

8

In certain examples, “Quality Dashboards” created via an
example application display data via columns and rows in
addition to individual patient “inspector” views. For example,
the system 200 shown in FIG. 2 provides one or quality
dashboards 250 to be created and personalized by an end user.
The flexible nature of this dashboard application empowers
organizations to create dashboards of the aggregated data
based on their needs at a given period of time. The organiza-
tion may determine what data elements they would like to
include on each dashboard and, without significant IT
resources, create a dashboard that reflects their vision. In
addition, organizations can determine where on the dash-
board they would like the information to be displayed and
further adjust the view of the content via features such as
“bolding” font, etc. When data is added to each dashboard,
clinical decision support mechanisms attached to this data are
displayed on the dashboard as well. For example, content
related to treating a patient based on a particular use case may
be included on a quality dashboard, along with alerts and
notifications to indicate to end-users when desired outcomes
are varying from defined clinical standards. Thus, organiza-
tions can create dashboards based on their own idea of “best
practice” care for a given disease state.

In certain examples, since combined content and best prac-
tices have been standardized, content from one organization
using the clinical knowledge platform may be easily shared
with other organizations utilizing the platform. In addition,
because the content within platform-related applications is
standardized in the same manner, upgrades to the example
platform can occur efficiently across organizations. That rep-
resents a dramatic change from prior IT solutions which
require unique IT upgrades because they are usually uniquely
customized to each organization in which they are installed.

Generally, content is information and experience that may
provide value for an audience. Any medium, such as the
Internet, television, and audio CDs, may deliver content as
value-adding components. Content represents the deliver-
able, suchas a DVD movie, as opposed to the delivery mecha-
nism, a DVD player. As long as content conforms to the media
standard, any compatible device can play it.

Content, as used herein, is the externalization or param-
eterization of “the instructions” that tell applications how to
work. For example, content is a collection of externalized
information that tells software, in conjunction with data, how
to behave. In certain examples, a clinical knowledge platform
takes in and executes content against data to render applica-
tions visually and behaviorally.

Content includes data read and interpreted by a program to
define or modify presentation, behavior, and/or semantics of
the program and/or of application data consumed by the pro-
gram, for example. Content includes documents presented to
a client by a program without modification, for example.
Content may be created, stored, deployed, and/or retrieved
independently of the creation and deployment of the program
(s) consuming the data, for example. Content may be version-
able to capture desired variation in program behavior and/or
semantics, for example.

Classes of content may include configuration content, pref-
erences content, reference content, application content, etc.
Content types may combine behaviors of two or more classes,
for example.

Software vendors take many different approaches to cus-
tomization. At one extreme, some vendors write different
software for each customer or allow customers to write soft-
ware. At the other extreme, a vendor has the same software for
each customer, and all customization occurs through creating

US 9,081,875 B2

9

or modifying content. In certain examples, the same software
may be used for each customer, and customization is handled
through content.

In healthcare, new laboratory tests, medications, and even
diseases are constantly being discovered and introduced.
Structuring this as content, where underlying software does
not need to change, helps accommodate and use updated
information.

In certain examples, many different content types, such as
form definitions, data models, database schema, etc., are
accommodated. In certain examples, each content type may
beused differently and involve a distinct authoring tool. Thus,
in certain examples, content may refer to “a collection of the
content instances for all content types,” also called a content
repository, knowledge repository, or knowledge assets. For
example, a content instance is a specific member of a content
type, such as a heart rate data model.

In certain examples, each content type is associated with a
generic, extensible structure that content instances of the
content type follows. An example clinical information system
can specify content in an abstract way that does not presup-
pose a particular software implementation, for example. That
is, another system, such as GE’s Centricity Enterprise, may
consume content from a knowledge repository, apply a dif-
ferent set of software, and achieve the same behaviors. Addi-
tionally, an abstract content definition can more easily tran-
sition to a new system. If one can extract content from a
legacy system, a knowledge repository may be able to import
and reuse it. Such a capability helps reduce a large barrier to
change for potential customers.

Content can change with time. In an example, a current
knowledge repository can handle any “old” data entered into
a system under the auspices of an older knowledge repository.
Occasionally, a question may arise where someone could ask,
“What did Dr. Smith see at some past time?” Under these
circumstances, a current definition of a particular display may
not correctly reflect the situation at the time. An example
clinical information system (CIS), unlike other systems, can
bring back the old form for visualizing the data since all
knowledge assets are versioned and retained.

Content may need to vary for different circumstances. For
example, a multi-patient view (MPV) may differ between
emergency department (ED) and labor and delivery settings.
Each MPV has rows and columns of data specific to its
setting. Context refers to being aware of and reacting distinc-
tively to a location and other situational differences. For
example, interpretation of a patient’s low temperature can
vary based on location. If it occurs in the recovery room after
cardiopulmonary bypass with deliberate patient cooling, it
means one thing. If the patient is in the ED after breaking
through ice into a lake, it means something completely dif-
ferent. Context may vary based on user location, patient loca-
tion, user role, and/or various other factors. In certain
examples, content may be applied based on context.

Globalization is a process of adapting software so that it
has no language references, before embedding capabilities to
make it suitable for particular languages, regions, or coun-
tries. Having globalized it, a CIS may then translate it to other
languages and cultures, called localization. Globalizing a
software product involves creating content separate from the
software. For example, embedded text (e.g., user messages),
sort orders, radix characters, units of measure, data formats,
currency, etc., may be removed and parameterized. Refer-
ences to languages, character sets, and fonts may also be
removed, for example. In certain examples, while display
representations may be local, terminology concepts are
applied universally, making a rule, calculation, or other con-

10

15

20

25

30

35

40

45

50

55

60

65

10

tent based on one or more terminology concepts useable
worldwide without modification.

For example, FIG. 3 illustrates an example interdepen-
dence of content types. As shown in the example of FIG. 3,
content is a set of interdependent building blocks. Content
may be thought of as a hierarchy, with terminology 310 (e.g.,
names of lab tests) as a lowest level. Terminology 310 may be
common and coded across a customer base. Clinical element
models (CEMs) 320 govern structure and content of objects
stored in a database and used by applications. A formlet 330
provides a way to display a particular content item (e.g., a way
to display a particular lab result). A form definition 340 pro-
vides an application or view (e.g., adashboard) of a collection
of formlets (e.g., a multi-patient view (MPV) showing one or
more lab results and/or other information). For example, if a
particular MPV definition is moved from one customer to
another, the MPV definition along with other content items on
which the form definition depends are imported into the new
customer’s knowledge repository. Content items may include
appropriate formlets, CEMs, and terminology, for example.

In certain examples, a detailed clinical model defines, at a
granular level, the structure and content of a data element. For
example, the detailed Clinical Model for “Heart Rate Mea-
surement” dictates the data type of a heart rate measurement,
and the valid physiologic range of a heart rate. It says that a
“body location” is valid qualifying information about a heart
rate measurement, but a “color” is not. It further decrees that
the valid values for “body location” are terminology codes
found in the “heart rate body location™ value set. Moreover, it
prescribes that a “resting heart rate” is an instance of “Heart
Rate Measurement” where the value of “temporal context” is
“resting”, where “resting” is also a coded value. A detailed
clinical model pulls the information together into a single,
explicit, and computable form. The detailed clinical models
or clinical element models (CEMs) govern the content and
structure of all data objects stored in an example clinical
database and used by applications, for example. In addition,
CEMs are extensible, such that content authors may add new
CEMs or attributes to existing CEMs without requiring major
changes to database structures or software, for example.

In certain examples, shared or portable content is, in effect,
“plug ’n play”. System administrators can add it (e.g., plug it
into) to a system without any software changes, and the con-
tent behaves in the intended way and does not cause errors.
The size or scope of shared content can range from a single
term to an entire knowledge repository, for example. Shared
content fundamentally changes an implementation paradigm
and reduces a total system cost of ownership, for example.

Customers can change shared content. Customers can
improve it or make it more suitable for their institutions.
When customers do this, they leave the original definition
intact, but clone it and keep their changed version in their
“local” space, for example.

As described above, classes of content may include con-
figuration content, preferences content, reference content,
application content, etc. Configuration content is content that
is modified infrequently and is concerned primarily with sys-
tem behavior, for example. Examples of configuration con-
tent may include internet protocol (IP) address and port of
clinical knowledge database, identifiers of terminals in sys-
tems, security access privileges, configuration files, etc. Con-
figuration content may affect program semantics, for
example. Configuration content is generally modified by sys-
tem administrators and is often stored in the file system, for
example.

Preference content is modified frequently and is concerned
primarily with variation between users. Examples of prefer-

US 9,081,875 B2

11

ence content include display colors and fonts, default search
parameters, screen layout, etc. Preference content rarely
affects program semantics and is most commonly modified
by individual users. While modified by users, the system
generally distributes initial or default preference content.

In certain examples, distributed or default preference con-
tent behaves very similar to application content before modi-
fication by a user. Preference content may be context sensi-
tive, transformed at deployment, etc. Preference content may
include vocabulary concepts and pick-lists that are resolved
when loading and retrieving just like other content types.

Reference content is documents that are presented without
modification as part of the application. Reference content is
often stored in formats that are opaque to a program (e.g., as
aportable document format (PDF) file, a Microsoft WORD™
document, etc.). Reference content is generally not specific to
or customized for a specific patient (e.g., instruction sheets,
information sheets, policies and procedures, etc.). Reference
content may be independent of program semantics and
behavior. Reference content may be authored independently
of'a program. While not an element of a content drive system
per se, reference content is often managed as content by a
clinical knowledge system. Once reference content is modi-
fied for presentation to a specific user, the content starts
behaving much more like patient data/documents. Reference
content with the structure to enable modification starts behav-
ing much more like application content.

Application content may be modified frequently or infre-
quently depending on use. Application content may be con-
cerned primarily with application behavior and semantics.
Applicant content may be generally specific to an application
domain. Examples may include a flow sheet template, clinical
element models, terminology, document templates that are
modified and stored as patient data (e.g., hot text), etc. Ter-
minology is application content but has behaviors distinct
from other application content types and is managed (largely)
independently of other application content, for example.
Application data often affects program semantics and behav-
ior. Application content may be authored at multiple levels in
an organization or external to the organization, for example.

Application content may be implemented as a custom
markup language, for example. Application content may be
implemented as a domain specific language (DSL), for
example. For example, data queries may be implemented
using a frame definition language (FDL). Clinical element
models may be implemented using a constraint definition
language (CDL). Application content may be directly
authored or imported as data into a content store (e.g., con-
cepts in a vocabulary server), for example.

In certain examples, while patient data is transactional and
often includes discrete data elements, application content is
often structured, complex objects and often has associated
metadata. In certain examples, metadata is data used to man-
age content, such as content identifier, version, name of
author, access privilege, encryption certificate, etc. Metadata
is not treated as content, for example. While patient data is
owned by a patient and is part of a legal record, application
content is not owned by a patient and is not part of a legal
record. Application content may be published (e.g., is not
transactional) and managed using a lifecycle.

Certain examples provide content-driven systems and pro-
cesses that rely primarily on content to determine application
behavior. An example system includes a reference platform
that consumes, interprets, and/or executes content while
remaining application neutral. An example system uses con-

10

15

20

25

30

35

40

45

50

55

60

65

12

tent that remains independent of an implementation of the
reference platform to allow independent evolution of the plat-
form and the application.

FIG. 4 illustrates an example hierarchy 400 of content,
associated data models, and terminology. In certain
examples, once one chooses content based data models, con-
tent-based queries and data management are also selected.
Content based applications are also chosen. An integral ter-
minology basis includes semantics of data defined in termi-
nology content, for example. As shown in the example of FIG.
4, application definition content 410 (e.g., MPV templates,
form(let) definitions, interface mappings, and/or document
templates, etc.) relies on data management content (e.g.,
frames) 420 (e.g., data query definitions, data update defini-
tions, and/or data transformations, etc.). The data manage-
ment content 420 leverages data models (e.g., CEMs) 430,
such as clinical data organization (e.g., structure) and/or
coded clinical data, etc. The data models 430 are constructed
based on a terminology 440 including clinical concepts and
relationships between concepts, for example.

In certain examples, context refers to metadata attributes
and/or labels that differentiate variations of a content item.
For example, each variant of content item may be referred to
as a context variant. Each variation of a content item has a
specific set of context attributes (e.g., language, location, role,
etc.). An algorithm or heuristic may select a desired variant
when retrieving based on a current user’s “context.” This
process may be referred to as context resolution.

Searching refers to examining the content item and/or
associated metadata for matches independent of context.
Searching can include context attributes to filter for specific
context variants in the search. The difference is that a specific
variant is not selected algorithmically or heuristically by the
content system when searching. Using the “user” as a context
attribute is one way to associate a content item with a specific
user; similarly provider as a context variable could be used to
associate an item with a group of users. Resolving context
generally requires some heuristic to resolve ambiguity or
conflicts among context variants (e.g., weighting or priority
schemes, default rules, etc.). This leads to some ambiguity
since changing/adding a context variant or changing the
weights of context attribute may change the context resolu-
tion on another item in not always obvious ways (at least to a
user).

In certain examples, a content item includes:

1. A root content item represented by a universally unique
identifier (UUID). The root content item includes metadata
only; no actual content is stored.

2. One or more context variants that represent variations of
an implementation of the content item in different client
contexts occur as children of the root content item.

3. Context variants may form trees of increasing context
specialization (e.g., a context variant may have child vari-
ants).

4. Each context variant has a unique UUID as well as a
relation to the root content item.

5. Each context variant maintains versions of that variant as
changes are applied to the variant.

As shown in the example of FIG. 5, a root content item 510
has one or more content variants 520-522. Each content vari-
ant 520-522 may be associated with one or more context
variants 530-531.

FIG. 6 provides an example multi-patient view (MPV) 600
made up of a plurality of formlets 610-614 and a frameset
640. Each formlet 610-614 corresponds to a concept 620-624
and a model 630-634. The frameset 640 is also associated

US 9,081,875 B2

13
with each model 630-634, and each model 630-634 is asso-
ciated with a concept 650-654, for example.

In certain examples, content may be stored in multiple
content stores. For example, content may be stored inan ECIS
database, an XDS repository, a third-party system, etc. Con-
tent documents in storage may be identified by a URI that
specifies the content store and the key of that item in that
content store. A content directory including the content meta-
data may be searched to obtain the URI for retrieval of the
content item. A content type manager may specialize the
search, storage, and/or retrieval of items of that content type,
for example.

A content item in the content directory is keyed via a UUID
for the item. That UUID is not necessarily part of the uniform
resource indicator (URI) that defines the storage location.

In certain examples, content items may be organized as a
content type. A content type is a set of content items that are
defined and managed using common definitions and method-
ologies (e.g., terminology, clinical element models, frameset
definitions, etc.). Content types may have different behaviors,
states, lifecycles, etc. Each content type may be managed by
a specific content type manager, which is treated as a plug-in
to a clinical knowledge platform and/or associated clinical
information system, for example. Content types may be
added by creating a new content type manager, for example.

Content type managers may interact with a content man-
agement framework by implementing a set of event handlers
(e.g., package, deploy, retrieve, etc.). “Generic” content types
(e.g., content types with no special behavior) may use a
default content type manager. An owner of a content type is
responsible for implementing an associated content type
manager, for example.

In certain examples, during authoring (that is, before
deployment), dependencies exist between content items. At
runtime (that is, after deployment), dependencies exist
between deployed forms of context variants. Dependents that
exist during authoring may or may not continue after deploy-
ment. For example, terminology description and pick-list
resolution are translations during loading and retrieving, not
dependencies per se.

In certain examples, at runtime, dependencies are between
deployed forms of context variants, not the context variants
themselves. The deployed form of a context variant is a “con-
tent frame”. At deployment time, it may be necessary to
guarantee that the packages (e.g., terminology) that a package
depends on are also deployed. Terminology dependencies
may be inferred from terminology relationships and map-
pings and do not need to be explicitly tracked.

In certain examples, a content based system provides a
capability to distribute content and content updates to exter-
nal instances (e.g., test systems, quality assurance systems,
customer installations, content patches (SPRS), etc.). An
example distribution system provides a capability to distrib-
ute content items and associated dependent content items
and/or insure that those content items already exist in the
target system. For example, an FDL content item must have
access to the clinical element types it references in order to
process a frame query. The example distribution system may
also facilitate an undo or reversal of installed content items
that generate issues. Content may be distributed as large sets
of items (e.g., during installation) and/or as individual items
(e.g., bug fixes), for example.

FIG. 7 illustrates an example content management process
700. The example process 700 includes authoring 710, pack-
aging 720, exporting 730, importing 740, deploying 750,
loading 760, and retrieving 770.

10

15

20

25

30

35

40

45

50

55

60

65

14

Authoring 710 includes a process of creating and/or modi-
fying a content item. Authoring may be done by an author
composing content directly using an editor (e.g., CDL, FL.D,
etc.), for example. Authoring may be done using tools (e.g.,
editor(s), etc.) that are specific to a content-type (e.g., termi-
nology), for example. Authoring may be done by tools within
the application(s) consuming a content type (e.g., MPV,
forms, etc.), for example. Authoring may be done by appli-
cations generating a content item (e.g., MPV generating
FDL), for example. In certain examples, there is no single
authoring environment for content; rather, there is a family of
authoring tools that is often content type specific.

Packaging 720 includes combining all content items and
(applicable) context variants within a transitive closure of
dependency graphs of one or more content items into a pack-
age, for example. Packages may include multiple indepen-
dent top level content items, for example. Packages may have
dependency(-ies) on other package(s). For example, a pack-
age containing a frameset content item may dependent on a
separate terminology package as a prerequisite to deploy-
ment.

Packages may very frequently contain multiple indepen-
dent, top level items each with its associated dependency
graph. A package may not include all context variants of an
item. For example, packaging may filter based on context to
form a package. Packaging events may include an event to
allow a content type manager to specify dependencies of an
item being packaged.

Packages may have dependencies on content types other
than content packages. For example, a terminology package
is a different content type than a content package. Content
items within a package may not have explicit dependencies
on terminology concepts. Rather, the package has dependen-
cies on the appropriate terminology packages.

In certain examples, packages are used as a distribution
mechanism. Packages may be deployed before items in the
package are available to a runtime system, for example. Pack-
ages themselves may be treated as content items. Thus, pack-
ages can themselves be packaged (e.g., packages of pack-
ages), and packages may be dependent on other packages. In
certain examples, packages may belong to a namespace or
domain. For example, packages may only include items from
a single namespace. Packages may have dependencies on
packages in another namespace, for example.

Package(s) may be exported 730 from one system and
imported 740 into another. Exported packages may be used to
distribute content, for example. System management tool(s)
may be provided to create, export, import, and deploy content
packages, for example.

Deploying 750 includes making content items included
within a package available to a running system. A content
item may be transforming during deployment, for example.
For example, constraint definition language (CDL) models
may be compiled and may create multiple type objects each
with an associated schema. As shown in the deployment
example of FIG. 8, a plurality of models 810 in a content
package 815 are deployed 820 to create a content frame 830
including plurality of type objects 835 with associated XML
schema.

In certain examples, each top level content item in a pack-
age being deployed is deployed independently. A deployed
content item is logically (and often physically) a different
object than the content item being deployed. For example, a
deployed content item has independent state and lifecycle.
Multiple content items may be created during deployment,
for example. For example, deploying a CDL model may
generate a CE type object and an XML schema. In certain

US 9,081,875 B2

15

examples, a source content item may not exist in the runtime
system. For example, the source CDL models are not
employed, and the generated CE type object is deployed.
Deployment of a package may be done manually and/or
implicitly by an authoring tool, for example. For example,
system administrators may wish to explicitly control deploy-
ment of data models but MPVs authored by a user may be
implicitly and immediately deployed.

In certain examples, each deployed content item is bundled
with all of the content items that are used to execute and/or
consume the item. The bundle is referred to as a content frame
830. A content frame 830 is analogous to an archive file
manifest. It may not (necessarily) contain the actual content
items. The content frame 830 may not include all of the items
generated during deployment. For example, the CDL sche-
mas may not be part of the frame.

A content frame 830 is also analogous to a context variant.
The frame has its own unique identifier but may be retrieved
using the identifier of the root content item the frame is based
upon in the same way that context variants are retrieved.
Deployment events may include an event to allow the content
type manager to specify dependencies of the deployed item(s)
within the content frame, for example.

In certain examples, context resolution refers to condition-
ing selection, composition, and/or behavior of a content item
based on a context of a user. Context resolution may occur at
one or more levels. For example, context resolution may
occur on selection of the content item(s) that a content item
being deployed is dependent upon based on context. Such
resolution occurs during deployment, and content frames are
context specific with dependencies resolved. Context resolu-
tion may occur on selection of a content frame based on
context when the content frame is retrieved by an application,
for example. Context resolution may occur on translation of a
content item based on context when loading and/or retrieving
a content frame, for example. For example, context resolution
may occur upon retrieval of terminology concept designa-
tions and/or retrieval and population of pick-lists.

Translation may be performed by the content type manager
during loading and/or retrieval, for example. A template tool
such as Apache Velocity may be used to implement the trans-
lation. The sensitivity of a content item to changes in the
terminology server is a function of when the translation is
applied e.g., during deployment, loading, or retrieval), for
example. During deployment, context may be used algorith-
mically/heuristically to select dependent items and/or the
deployment tool may specify the required dependent items. In
general, context resolution is done heuristically (e.g., scoring
and weighting schemes) because of the difficulty in determin-
ing an unambiguous algorithm to resolve conflicts. The con-
tent type manager may provide its own mechanism for con-
text resolution, for example.

In deployment 750, a content item may be a part of multiple
content frames. For example, multiple copies of a content
item may be loaded by an application if it loads multiple
content frames containing the item. Applications may search
for and retrieve content frames. For example, content man-
agement may load and cache content frames. In certain
examples, authoring tools may retrieve content items directly.
Running applications may retrieve content frames during
execution, for example.

Context may be resolved while constructing a content
frame. That is, selection of context variants on which the
deployed content item is dependent is done during deploy-
ment, for example. Content frames may thus be context spe-

15

20

25

30

35

40

45

50

55

60

65

16

cific. During load and retrieve, context may be used to select
a content frame, not content items contained in the frame, for
example.

A content frame may itself be considered a content item.
Thus, the content frame may be versioned, have associated
metadata, etc. Since a content frame is a content item, pack-
ages of frames may be constructed and distributed content
frames without the associated source content items, for
example. In certain examples, content frames may contain
content frames, allowing courser grained deploy and unde-
ploy operations. In certain examples, optimizations to frame
loading (e.g., loading a single copy of a common content
item) may be done, if desired, using techniques such as ref-
erence counting, etc.

In certain examples, content frames are related to a
deployed root content item in a fashion analogous to the
relationship between context variants and the content item.
For example, a content frame is identified by the same UUID
as the root content item in the frame and shares the same
directory metadata. Each content frame may have its own
unique identifier that may be used as a reference. Each con-
tent frame may be context specific and may have multiple
versions. In certain examples, only deployed content items
have associated content frames. Because of this relationship,
content frames may be treated in a directory as properties of
a content item along with context variants, for example.

In certain examples, content may be undeployed. An unde-
ploy is a process of a making a (deployed) content frame
unavailable to a running instance, for example. However, data
instances stored in a CDR may be dependent on the content
frames used to create the data instances (e.g., clinical element
(CE) types). As aresult, a content frame, once deployed, may
not be physically deleted from the clinical content system
without compromising referential integrity, for example.
Undeploy, then, may make a content frame invisible to sub-
sequent searches and context selection. Through undeploy, a
previous version of a content frame may then be once again
visible to search and context selection, for example. In certain
examples, an undeployed content item may still be directly
retrieved using the UUID for the content frame.

In certain examples, content item translation refers to
modifying a content item during loading and/or retrieval to
make the content item responsive to changes in content items
on which it is dependent without redeploying the content
item. For example, terminology designations and pick-lists
may change independently of the deployment of the content
item. Content item translation may be a responsibility of a
content type manager responsible for a content item. For
example, translations that make sense for one content type
may not make sense for another content type. Content item
translation may be context specific, for example. Content
item translations may be performed by inserting custom mac-
ros in a content item (e.g., at authoring time) and applying a
template tool to execute the macro and perform the translation
with the item is retrieved.

Content item translations may be fine-grained. For
example, they do not change the structure of the content item
but replace elements (e.g., labels, lists of labels, etc.) within
the item. Course grained modification of content frames (such
as re-resolving content items that the content item being
retrieved is dependent upon at retrieval time) may be unde-
sirable because they can lead to unpredictable changes to
application appearance or behavior. Hence, these kinds of
modification are restricted to occurring at deployment time.
In certain examples, common tools may be used to perform
translation of content items represented in XML or HTML.
Apache’s Velocity is used here as an example only. Depen-

US 9,081,875 B2

17

dencies for items that depend on translations may be managed
by maintaining a content frame dependency on a content
frame containing the items to be translated (e.g., a terminol-
ogy content frame) rather than by maintaining specific depen-
dencies, for example.

Loading 760 is a process of retrieving a content frame
containing deployed content item(s) from storage and making
the frame available for use by running application(s). Content
items in a content frame may be translated during loading. For
example, terminology designations may be resolved and/or
pick-lists retrieved. A content frame may be cached after
loading. Content items contained within a content frame may
be loaded as a single operation, for example.

In certain examples, the choice of doing translation at
retrieval time or load time is up to the content type manager.
Translating at load time means that the cost of translation is
amortized over multiple uses of the item; translating at
retrieve time means that the item is more sensitive to context
variation and changes in resolved content. A selection of
translation time may be content type specific, for example.

Retrieving 770 includes fetching a loaded content frame by
a consuming application. Content items within the content
package may be translated during retrieval (e.g., resolving
terminology designations, retrieving pick-lists, etc.). A
loaded content package may be retrieved multiple times by
different clients, for example. An application may choose to
reuse (e.g., cache) a retrieved content package at its discre-
tion. Content items within a content frame may be loaded as
a single operation, for example. In certain examples, since a
content item may be present in different content packages,
different instances of an item may be translated using difter-
ent context. For example, an application may show a content
item in two different languages concurrently for comparison.

A choice of doing translation at retrieval time or load time
may be made by the content type manager. Translating at load
time means that the cost of translation is amortized over
multiple uses of the item. Translating at retrieve time means
that the item is more sensitive to context variation and
changes in resolved content. A selection of translation time
may be content type specific, for example.

In certain examples, content may be divided based on
namespace. A namespace is a partition of content items in a
system where each partition is owned and managed indepen-
dently of other partitions. FIG. 9 provides an example of
namespaces A, B, and C including various content items
(CIs).

Namespaces may be motivated by various factors. For
example, content items in one namespace may be protected
from modification by another party (for example, a customer
modifying GE distributed and owned content). Applying
maintenance (e.g., updates, bug fixes, etc.) becomes difficult,
if not impossible, if a customer can modify GE distributed
content (e.g., customer modified content may potentially be
broken when replaced with an update). Alternatively or addi-
tionally, for example, customers may be allowed to add and
extend distributed content in safe ways while enforcing gov-
ernance restrictions on such modification (e.g., models may
not be modified or extended, but MPVs may).

While some of these restrictions may be enforced by a
security system, customers often set security policy, so
another mechanism may be used to enforce such restrictions.
Additionally, some rules such as inheritance restrictions may
not be adequately managed via security policy.

In certain examples, a simplified namespace model pro-
vides that each content item in a system may be searched for
using a single namespace precedence order. It is possible that
different content types may involve different search prece-

10

15

20

25

30

35

40

45

50

55

60

65

18

dence (e.g., a search path to resolve data models may not be
the same as a search path to resolve forms or reference con-
tent). Extensions to the model can be made based on circum-
stances, for example.

In certain examples, namespaces may be “owned” by a
provider, a customer institution, a department, etc. Such own-
ership separates provider content from customer content, for
example. Multi-tenancy and digital rights management may
be facilitated through the use of namespaces, for example. In
certain examples, only the owner of a namespace may create
ormodify content items within the namespace. An owner may
own multiple namespaces, for example. A clinical knowledge
platform and/or associated enterprise clinical information
system may serve as an owner of a “root” namespace (and
possible others), for example. Each customer installation may
be an owner of at least one namespace for that customer, for
example.

In certain examples, an “owner property” on a content item
used as a context attribute is also presented in some contexts
as equivalent to a namespace. However, in context resolution,
using an owner property there may be no inherent prece-
dence. For example, given a concept with designations poten-
tially owned by A, B, and C, an application asks for the
designation owned by A but that designation does not exist.
Does the system return designation B or designation C? In
general, property precedence in context resolution involves a
heuristic to resolve (e.g., weighting and scoring schemes).

Additionally, there may be necessary relationships
between content items in namespaces. For example, special-
ization via inheritance, overriding content items in one
namespace with the same item in another, copying an item
from one namespace to another (e.g., is it legal to do the
copy?), etc. These behaviors may or may not be able to be
implemented using an owner property (alone) in the general
case.

Additionally, “owner” may be used in at least two different
senses: first, as an intellectual property/digital rights manage-
ment (IP/DRM) concept where it designates actual ownership
(e.g., a package by “owner” is a practical application of this
concept—package everything that is owned by an owner);
second, as an attribute used to select a desired/appropriate
context variant when retrieving a content item. This second
usage is more directly analogous to namespaces with the
caveats above.

In certain examples, a difference between an owner context
attribute and a namespace is that namespaces are known to
and defined by a system rather than defined independently for
each content item in content (e.g., owners are generally ter-
minology content). The system can establish precedence,
maintain persistent/immutable relationships between items
in different namespaces without expectation that the relation-
ships will change, for example. That is, “namespaces” may be
part of a reference implementation; owners are content
defined and hence may be interpreted by the reference imple-
mentation, for example.

In certain examples, namespaces have “precedence” when
searching retrieving, etc. For example, as shown in FIG. 9, a
highest precedence namespace C is first searched for a con-
tent item, then a second highest (e.g., namespace B), etc.
Precedence may be established when configuring the system
or defining the name spaces, for example. Precedence may be
overridden when deploying a package.

In certain examples, relationships may exist between con-
tent items in one namespace and content items in a lower
precedence namespace. In certain examples, changing
namespace precedence may change the nature of a relation-
ship.

US 9,081,875 B2

19

In certain examples, a new content item may be created in
ahigher precedence namespace by copying an item in a lower
precedence namespace. For example, an MPV may be copied
from base content, modified, and saved as a user-owned MPV.
A content item may be created in a higher precedence
namespace that hides or replaces the same content item in a
lower precedence namespace, for example. For example, a
new version of a formlet that hides the same formlet in base
content to customize display of that formlet. Creating a new
content item that specializes (e.g., inherits from) an existing
content item may hide or replace a base content item in a
lower precedence namespace. For example, a new attribute
may be added to a patient clinical element model provided by
specializing the patient model.

In certain examples, namespace relationships are managed
by a content management system. If a base content item is
modified, a specialized content item may need to be rede-
ployed. In certain examples, specialization of a content item
in a namespace may be allowed in another namespace but
copying the content item may not be allowed. State changes in
a base content item may involve state changes in a specialized
content item (e.g., if the base item is deprecated, the special-
ized item may also require deprecation), for example. In
certain examples, digital rights management may prevent a
copy of a content item from being created. In certain
examples, if a content item that was copied to a new
namespace is modified, an owner of the target namespace
may need to be notified of the change so the copy can be
reviewed for changes.

In certain examples, an owner attribute on a content item
may be insufficient to manage namespace relationships.
Clinical element models (CEMs) are an example of a rela-
tionship restriction: copying and hiding a CEM can lead to
data inconsistencies while specialization through restriction
or extension can be safely done. Hiding an MPV on the other
hand, is generally a safe operation, for example. In certain
examples, relationship management/enforcement is a respon-
sibility of a content type manager (CTM), or at least the CTM
should be able to specialize system relationship management.

Namespaces may be used in a variety of stages of a process.
For example, namespaces may be used during authoring. For
example, namespaces may be used when resolving context
variants, establishing relationships such as copy, copy and
hide, etc. Namespaces may be used during packaging, for
example. A package may include content items from a single
namespace, for example. Context variants, relationships, etc.,
in other namespaces involve dependencies on packages in
those namespaces, for example. Namespaces may be used
during deployment (e.g., when resolving context variants,
when establishing relationships such as inheritance relation-
ships, etc.), for example. In certain examples, namespaces are
not used during load and retrieve at runtime.

In certain examples, each context variant of a content item
has a current “state”. For example, a state may include
deployable, deployed, loaded, deprecated, etc. Each content
type has a set of allowable states and a set of allowable state
transitions represented as a state machine. Content types may
have different state machines in an authoring environment
than in a runtime environment, for example. State machines
may be owned by a content type manager since the manager
defines a meaning of each state for a content type.

In certain examples, a state in a runtime system is actually
the state of the content frame. However, for simplicity, a state
of the content frame is assumed to be (and managed as) the
state of the root content item. A state of content items
included via dependency resolution may be irrelevant to the

10

15

20

25

30

35

40

45

50

55

60

65

20

runtime system (e.g., it may be required that the root content
item of the content frame be redeployed to bubble up state
changes in that item).

In certain examples, lifecycle management refers to aset of
workflows that manage transition of a content item from one
state to another. Each state in a content type state machine is
associated with a distinct workflow that manages the content
item when in that state, for example. In certain examples,
workflows are content items to allow variation across imple-
mentations.

II. Clinical Element Query Language, Systems, and Methods
of Use

In certain examples, a query language based on clinical
element models (CEMs) is provided for querying data based
on CEMs and relationships that are part of the CEMs. As
described herein, a clinical element query language (CEQL)
is a language for expressing model-specific queries. Since
there are no physical structures with CEMs and relationships
are meta-relationships in an object, there needs to be a mecha-
nism to express the meta-relationships in a query. Rather than
querying physical structures, CEQL is used to query logical
structures found in objects based on CEMs. Since CEQL is
clinical element model-centric, CEQL is implicitly aware of
relationships between models. A frame defines a collection of
data, and frameset is a set of those collections. Frames are
defined via queries, including CEQL queries and transform
queries. For example, a programmer writes CEQL queries to
define frames to construct forms (e.g., applications). In cer-
tain examples, a CEQL query result is a tree of objects that is
navigable via the CEQL.

Current clinical application and forms efforts involve much
customization and hardcoding of fields, data, operations, etc.
A change in an application or form similarly involves an
extensive manual effort and potentially a significant time lag.
By providing a clinical element query language to standard-
ize, simplify, and streamline interaction with underlying
clinical element models and associated data, application and
forms generation, customization, and use can be improved.

In certain examples, a user can build models and build
queries for the models using CEQL. A resulting frame struc-
ture is returned. The frame is a result set. A CEM gives
relationships between objects that are returned. For example,
in a lab panel, objects for results and relationships between
results (e.g., objects) are defined, and a lab panel can include
many patients and keep track of which labs are owned by
which patients. A frame specifies relationships between
objects and who owns the objects. That is, a frame serves asa
container that knows how to hold objects and relationships
between objects. A user or program can put as much infor-
mation as desired in a frame and write the frame to a database
or other data storage as a single unit. CEQL, for example, is a
language used to define contents of frame. A Clinical Element
Transformation Language (CETL) operates on content of
frame and turns the frame into something an application can
execute or use.

In certain examples, CEQL provides a language for
expressing model-specific or model-centric queries. For
example, using CEMs, models are provided with metadata
such that a single object is provided at runtime with one or
more models used to understand and interpret contents of the
object. Relationships can be defined as meta-relationships in
an object, for example. CEQL can be used to form a query
including one or more objects and relationship(s) (e.g., meta-
relationship(s)) between objects. For example, objects may
not be aware that they are part of a collection (e.g., an encoun-

US 9,081,875 B2

21

ter). A query can be formed using CEQL to retrieve a lab panel
and all of its result objects including relationships between
the objects, for example.

For example, a user (e.g., a human user and/or automated
program) can construct and/or trigger a query to, for example,
retrieve all patients that are on the fifth floor of a hospital as
well as all chemistry labs (if any) for each patient. In certain
examples, the query is a functional language query that, rather
than querying physical structures, is querying logical struc-
tures that are found in the objects. The language itself (e.g.,
CEQL) knows what it means to be on the fifth floor, for
example.

Continuing the example, from p in Patient, e in Encounter
can be joined using p where e is assigned a location as depart-
ment equals five 5. Then, 1 in chemlabs can be joined using p,
and p,l is selected by the query. Thus, a location is treated as
a department and a patient bed is internally translated to a
department. This query with joins represents an implicit rela-
tionship that is carried over into a frame to allow a user to
navigate them at runtime, for example.

Thus, certain examples provide a query language that is
model centric in which the query language implicitly is aware
of or has information regarding relationships between mod-
els. A query can be composed, and an output is, for example,
a Structured Query Language (SQL) output for that query.
Once a result set is identified, objects can be filtered in dif-
ferent ways.

In certain examples, queries are used to populate frames in
a form. A frame can be defined via the query. When defining
a frameset of frames, a human and/or electronic user is actu-
ally defining a set of queries. In certain examples, a CEQL
query result is a tree of objects that is put into a frame, and the
CEQL allows navigation ofthe object tree. CEQL queries can
be written by a programmer to define frames to construct
forms, for example.

Certain examples provide a query generator to generate
queries (e.g., a query for labs, a query for blood pressure,
etc.). In certain examples, a query can be a combination of a
plurality of sub-queries such that a single query of a database,
rather than a plurality of separate queries, retrieves the
requested information. The query generator takes requests
and assembles them into a single query which is turned into a
SQL query which provides requested terms or information,
for example.

In certain examples, a grammar is defined and tested to
generate results on artificial clinical data repository (CDR)
data.

In certain examples, a query can be parameterized (e.g.,
rather than fifth floor, can ask for patients on a current floor
and pass in a location L and a department floor=$L to act like
parameterized stored queries). Queries can be compiled when
they are built, and a resulting content item contains the com-
piled query and is executed at runtime. Thus, a query can be
stored as a content item for later use by a system, such as a
clinical information and/or clinical decision support system,
for example. In certain examples, CEQL and CETL are used
with frames to provide a frame definition language (FDL).
III. Clinical Element Transformation Language, Systems,
and Methods of Use

The Clinical Element Transform Language (CETL) is a
language for taking results returned by a query and translating
them into a form that is useful for an application. Transforms
are targetable to different applications, for example. Custom-
ers build models and build queries for the models using
CEQL, and results are provided as a frame structure. The
frame is a result set. A CEM gives relationships between
objects that are returned. For example, in a lab panel, objects

10

15

20

25

30

35

40

45

50

55

60

65

22

for results and relationships between results (objects) are
provided, and a user can have many patients and keep track of
which labs are owned by which patients.

A frame gives relationships between objects and who owns
the objects. That is, a frame serves as a container that knows
how to hold objects and relationships between objects. In
certain examples, there is no limit to an amount of informa-
tion to put in a frame. CEQL is a language used to define
contents of a frame. CETL operates on content of frame and
turns it into something an application can do. The frame can
be written to a database or other data store as a single unit, for
example.

In certain examples, data can be transformed structurally
and/or semantically. The CETL facilitates transforms with
respectto a query constructed using CEQL. Transforms result
in a data graph of objects, for example. In certain examples,
CETL includes two parts—a navigation language and an emit
language. CEQL and CETL together with frames provide
output, for example. Formlets operate over the output of the
transforms, for example.

In certain examples, CETL serves as a bridge between 1)
queries for clinical element models built using the CEQL and
2) a resulting frame and/or formlet to be used to form a
presentation for an application. The transform enables asso-
ciations to be made and relationships to be established. Addi-
tionally, CETL enables navigation of relationships and reduc-
tion or avoidance mix-ups and confusion between objects, for
example.

Certain examples provide flexibility to separate the trans-
forms and relationship resolution from the query defined
using the CEQL. Certain examples allow flexible, dynamic,
easily customizable, yet structured, creation of forms and
applications.

In certain examples, a transform language, such as CETL,
provide a language for taking results returned by a query and
translating them into a form that is useful for an application.
The transforms are targetable to different applications.

In certain examples, customers build models and build
queries for the models using CEQL. A frame structure is
provided as a result of the query(-ies). The frame is a result
set. A CEM gives relationships between objects that are
returned. For example, in a lab panel, objects for results and
relationships between results (objects) exist. Thus, many
patients can be monitored along with which labs are owned by
which patients.

In certain examples, a query result is provided as a data
graph of a plurality of objects, wherein each object is also a
data graph. A user (e.g., a software and/or human user) can
navigate a tree of objects and, when an object is reached, a tree
corresponding to that object is navigated. In certain examples,
navigation includes a translation into an internal structure of
an object. In certain examples, relationships (e.g., implied
and/or explicit) can be navigated.

In certain examples, CETL is implemented as a declarative
language for navigating framesets, frames, and instances.
CETL can be used to extract discrete data for consumption by
an application, for example. Data may be transformed (e.g.,
structurally). For example, data can appear to be a rowset in
SQL (e.g., a standard SQL result set). For example, a multi-
patient view application (e.g., frame views, a frame view is a
result of this transform, etc.) can be formatted as one or more
SQL rowsets so that the application can be displayed in a
table.

Alternatively or in addition, CETL can be used to make
results appear as simple objects (e.g., fact objects), such as an
object with a plurality of attributes inside the object. In certain
examples, pieces can be picked from the data graph to build a

US 9,081,875 B2

23

consumable fact object. In certain examples, data results can
be provided to an enterprise data warehouse (EDW) via an
extract, transform, load (ETL) process. For example, analytic
tools in an EDW are relational. Data can be extracted from
one or more CEMs and turned into a table row/column model
to populate an EDW and/or another structural transformation,
for example.

In certain examples, data can be transformed semantically.
For example, terminology designation retrieval can be facili-
tated. For example, a word can be used as a synonym for a
concept. However, the word is no longer the concept, so the
concept cannot be retrieved using the word. The concept can
be displayed, for example. In certain examples, one or more
aggregation functions (e.g., give an average of values (e.g.,
average temperature over last 24 hours for a patient), see
standard deviation, minimum, maximum, hourly lab values,
etc.) which operate over sets of objects can be provided.

In certain examples, data quality issues can be addressed
using CETL. For example, sometimes, inconsistent data
types (e.g., a pH test gives back real pH number or a value on
a relative scale (+1, +2, etc.)) can be addressed as part of the
transform (e.g., provides an average plus an indicator of a
value thatis not part of the average that the user (e.g., a doctor)
can drill down and see). In certain examples, such values and
transform is provided in content, rather than code.

In certain examples, CETL includes two parts that are
interleaved in the language: a navigation language and an
emit language. The navigation language provides a mecha-
nism to navigate a data graph to identify data of interest (e.g.,
to a program, user, etc.). The navigation language can operate
by progressive set restriction, for example.

Using progressive set restriction, results can be viewed in a
data graph as a set of objects. A certain set of objects is
provided and then restricted further by traversing the data
graph or tree to reach a certain level at which elements, and
only those elements, found at that level in the tree can be
operated on. In certain examples, no order is provided at atree
level unless imposed by a user (e.g., software and/or human
user).

For example, a query may select p in Patients over F1 (e.g.,
select all patients in this frame, ignoring other things in the
frame); emit p.name (patient identifier); select1in labs over p
(take each patient one at a time and only deal with the labs that
are owned by that patient); and emit 1.value (then get patient
identifier and lab in resulting output).

In certain examples, each select takes a current set of
objects and restricts it to a subset. Each object can then
operate on each object in the subset and restrict further. A
process can continue restricting until it obtains a desired
value. Value(s) can be emitted at any point. Emitted values
determine a form of output, for example. The structure of the
emits defines what a resulting object looks like. In certain
embodiments, a transform can be built, and the emits define
the structure of the output. Certain embodiments facilitate
navigation of the result set without data confusion or mix up
(e.g., between patients).

The navigation language can be a declarative language, for
example. Safe navigation is inherent in the language due to
the structure of the language.

In certain examples, the emit language is used once data of
interest has been found and transformed (e.g., a JAVA™
object populated with values in it). For example, with a multi-
patient view (MPV) application, a row structure can be gen-
erated with extract, transform, load (ETL) to build an SQL
table/row structure for the application.

In certain examples, the emit language is targetable. A
system may have multiple emit languages for a single navi-

10

15

20

25

30

35

40

45

50

55

60

65

24

gational language, for example. The emit language may be
used to emit a Java object, a pseudo row set, a data stream, etc.
The emit language can also call library functions (e.g., ser-
vices, decision support, etc.) as a transform of data is being
performed. Thus, a transform may include: decision support
calls, application services, library functions, etc. For
example, library functions can include calculations (e.g.,
glaucoma score because a user wants to show the computed
score rather than the raw data so that is what is emitted as a
result of that function; get lab result and get indicator of
whether the lab result is normal/abnormal and indicate lab
result and/or normal/abnormal; etc.). In certain examples,
data error management/data error handling can be facilitated
via the emit language and data transform.

Incertain examples, CETL can be for visual (e.g., formlets)
as well as non-visual transforms. Frames, CEQL, and CETL
work together to build forms and/or other interfaces/applica-
tions. Formlets operate over the output of the transforms, for
example. Formlets define what the transform is and then, at
runtime, operate on the output of the transforms. Formlets are
not tied to what the model is, but rather operate on the output
of the transforms of the models.

IV. Systems and Methods for Organizing Clinical Data Using
Models and Frames

In certain examples, customers build models and build
queries for the models using CEQL. A frame structure is
returned. The frame is a result set. A CEM or other DCM
gives relationships between objects that are returned. For
example, in a lab panel, objects are provided for results and
relationships between results (e.g., objects). The lab panel
results could have many patients and need or want to keep
track of which labs are owned by which patients. A frame
provides relationships between objects and who/what owns
the objects. The frame provides a container that knows how to
hold objects and maintain relationships between objects. In
certain embodiments, there is no practical limit to an amount
of information to be put into a frame, and the frame can be
written to a database as a single unit. CEQL is a language used
to define contents ofa frame. CETL operates on content of the
frame and turn it into something an application can do.

Frames define how data is organized. Otherwise, a clinical
element model (CEM) is a collection of unorganized objects
to be organized to make them useful. Frames define a trans-
actional unit as a set of result objects with relationships in the
transactional unit. Frames provide a “safe” navigational
mechanism through the results data. Frames manage a set of
clinical element instances and relationships. Frames can be
grouped into collections called framesets and define opera-
tions between frames, supporting parallel and partitioned
queries, for example.

Certain examples improves upon and eliminate a need for
customized, hardcoded, dedicated application development
and replace it with a more flexible, adaptive and yet struc-
tured, platform using clinical element models, data, queries,
and transforms with frames. Certain examples provide
dynamic, adaptive, content-based organization and presenta-
tion of information and functionality.

Frames define how data is organized. A CEM is a collection
of'unorganized objects that are to be organized to make them
useful. For example, a runtime for clinical element (CE)
instances is provided. An instance is an instantiation of a
CEM. Instances can be placed into a frame, and the frame is
submitted into a database and/or other data store. Sets of CE
Instances can be organized and relationships between objects
can be managed, for example. Ownership can be preserved
along with associations (e.g., panels), groupings (e.g.,
encounter membership), etc.

US 9,081,875 B2

25

A transactional unit (e.g., lab panel (e.g., CDC)) can be
defined as a set of result objects. Objects as well as relation-
ships between objects can be written, and the relationships are
not necessarily structural (e.g., may or may not have a pointer
from one object to another so frame helps maintain that rela-
tionship). Result objects and relationships can be written as a
single transactional unit, which is nice from a service-ori-
ented architecture (SOA) standpoint because single internet
transaction can occur.

Using the emit language provides a “safe” navigation
mechanism. For example, when building an MPV and execut-
ing a query to populate a frame with data for 50 patients, a
user wants to guarantee that data is not mixed up. For an MPV
application 1010, such as illustrated in the example of FIG. 10
with patients P1, P2, P3 1021-1023 and objects 11, 12, 13
1031-1033, the user wants to ensure instance 11 1031 is not
associated with P2 1022. Retrieving objects out of a frame for
P11021 and then looking at the instances/objects 1031-1033
associated with P1 1021 makes it less easy for someone to
make mistakes and get a patient hurt through an incorrect or
unintended association.

In certain examples, “cursors” define a position in a result
set as the result set is navigated and can be used to allow a user
(e.g., human and/or software) to only navigate particular
paths in the result set. Result sets and their relationships can
be managed as a single closed object, for example. Result sets
can be grouped into collections called framesets. Operators
between frames, such as union, intersection, etc., can be
defined.

For example, FIG. 11 depicts an example frameset 1110
including a plurality of frames F1, F2, F3 1121-1123. Each
frame 1121-1123 can include one or more objects 1131-1134.

In certain examples, parallel and/or “partitioned” queries
are supported. For example, an MPV includes a list of patients
that are “favorites™ for a particular physician. The physician is
in aunit, so the physician may want to also see patients in that
unit. Additionally, a patient list is provided in an electronic
medical record electronic health record system such as GE’s
Centricity™ Enterprise that the physician wants to use
because he’s covering for another doctor. Thus, when the
system refreshes there are three queries to perform. Three
queries are performed and a union is taken of the results to
identify the target patient set. Once the patients have been
identified, data for those patients is gathered. The three que-
ries may be executed in parallel and unioned because a patient
may show up in multiple lists/queries. A partition allows
multiple targets for queries (e.g., different systems). Results
are returned and perhaps additional operations can be applied
to those results. Framesets allow operations to be applied to
multiple sets, multiple frames, etc. A frame defines a collec-
tion, and frameset is a set of those collections. An application
is provided through a meta-organization of objects (CEMs)
with operators applied to or otherwise associated with them,
for example.

In certain examples, CEQL, CETL and frames combine to
form a frames definition language (FDL). An FDL generator
generates frames using CEQL and CETL, for example. The
FDL generator takes snippets of query(-ies) and combine
them to get a query and a transform and in turn build a
content-based application, such as a multi-patient viewer.
CEQL leverages CEMs/DCMs, and frames allow a user (e.g.,
software and/or human) to use CEQL to use and consume
CEMs/DCMs.

V. Frames Definition Language

In certain examples, a content-based system includes a
content-based data definition. Using a content-based data
definition, data definitions can change even after the system is

10

15

20

25

30

35

40

45

50

55

60

65

26

compiled. An application can be generated to write a new
object of a given (but changing) type to a database and can
then query that object across system releases and updates. In
certain examples, the query is expressed as content apart from
a schema so as not be tied to a particular database schema
which may change. Thus, a reference layer can change but the
content layer is stable for users.

Certain examples provide a language to define queries
against a content-based data item (e.g., queries include update
and create commands). A translator is provided to interpret a
language and turn the language into an SQL query for a
reference platform.

In certain examples, query predicates are built against a
model for content. Queries are made in reference to clinical
element models. An interpreter converts queries into loca-
tions based on the clinical element models. Objects are pro-
vided as hierarchical data structures. CEMs and/or other
DCMs can be used to express hierarchical queries based on an
understanding of data organization and storage in a system,
for example.

Once hierarchical data objects have been retrieved, the
retrieved objects are transformed into a form consumable by
a requesting application. As part of the transformation, data
variability and other issues are treated. Using an application-
specific data format, a transform is defined by how the par-
ticular application expects the data. For example, a query is
defined, and then a transform is defined on top of the query.
The query and the transform are tightly coupled, so they can
be put into one language and then further defined by the
application. A frames definition language, for example, can
be formed using two languages—a transform language and a
query language. The transform language deals with data vari-
ability by treating all data as sets and performing progressive
restrictions on sets until desired item(s) are identified. Vari-
ability can be introduced based upon a state of the data and
how the data is being restored by the user. Data can include
multiple representations, different data types, etc., the system
and language(s) are to deal with the shape the data is in and
utilize the data.

Thus, transforms can be defined in content while reducing
or minimizing the ifs/exception (if this, do that, etc.). For
example, an application can write a transform in FDL,, store
the transform in content, and compile the content, where the
transform can be done at least partially in compile so that the
transform does not have to be done at runtime. By performing
a transform at compile time, optimization(s) can be applied
that cannot be used at runtime.

In certain examples, a declarative, set-based restriction
model is provided via a FDL. Using the declarative, set-based
restriction model, an application can drill down to desired
data to determine whether the data is present. If no data is
present, an error does not occur, but, instead, a transform can
insert a null value for the application to indicate that the
desired data is not there.

In certain examples, a data write is an inverse of a data read.
A transform of the data from its representation in the appli-
cation to an expected representation for a data model is per-
formed. Since there may be data variability, certain data may
ormay not be present, and the transform can reflect a presence
or absence of certain data without transmission loss. Thus, a
transform is to structure the data to make the data computable
without fidelity loss even though an application may not be
able to tell if it has all the pieces expected. Using content and
data models, an interface is viewed as an application and
behaves no differently than a data entry form, which provides
flexibility in application generation and execution and data
transformation, for example.

US 9,081,875 B2

27

In certain examples, a user is provided with tools and
syntax to express a query and transform in an FDL or com-
ponent (e.g., CETL and/or CEQL) of the FDL. In certain
examples, one or more languages work with one or more data
information models to provide relationships between pieces
of data (e.g., clinicians communicating with each other to
provide comments indicating relationships between pieces of
data in a chart). Each item (e.g., note, image, report, etc.) is a
data model. The model can be extended to include annota-
tions (e.g., a relationship between 1 to N data items to allow
an annotation to define relationships between data). For
example, a lab result is an annotation defining relation
between two other pieces of data.

V1. Systems and Methods for Formlet Generation and Pre-
sentation

In certain examples, a formlet is a presentation piece; a
piece that describes a connection to models (e.g., formlets are
bound to clinical element models (CEMs) to know what data
elements to use), and sufficient information to generate a
transform language and a query. A formlet represents a cell or
a field on a form, for example. Formlets are independently
authored and can be combined arbitrarily to generate a trans-
form/query. For example, users can build models and build
queries for the models using CEQL and receive in return a
frame structure, where the frame is a result set. A CEM
provides relationship(s) between objects that are returned.
For example, in a lab panel, results are objects, and relation-
ships between results (objects) can be provided. A user may
have many patients, and, thus an application is to keep track of
which labs are owned by which patients. A frame provides
relationship(s) between objects and who owns them (e.g.,
serves as a container that knows how to hold objects and
relationships between objects). As described above, CEQL is
a language used to define contents of a frame, and CETL
operates on content of a frame to transform the content into
something an application can do.

FIG. 12 illustrates an example formlet 1210 including a
plurality of frames F1, F2, F3 1221-1223. Each frame 1221-
1223 includes one or more objects 1231-1234.

In certain examples, a formlet has three components—a
presentation component, a query component, and a transla-
tion component. In certain examples, all three components
are to be specified for a formlet. In certain examples, a form
element is not bound directly to a model but is instead bound
to the model viaa CETL transform. That decoupling provides
greater flexibility, whereas direct binding can be too restric-
tive. In certain examples, formlets are made metadata-based
to enable them to be used as a source form of a transform.
Formlets and their underlying components/languages enable
applications to retrieve and display data through generation of
query and associated transform.

A user interface or displayed application view can be
implemented as a collection of formlets, and each formlet can
be composed of more formlets. For example, a lab summary
formlet can include icons for each lab that can be imple-
mented as independent formlets so that information about
each lab result can be presently differently.

For example, a tree structure can be provided, where each
element of tree has a bit of a desired query. At an end node,
available formlets at that level are combined into a query
snippet. The tree structure is traversed to move up the tree
with a growing query/transform snippet of parent and child,
taking each node and reducing it to a single node until the top
of the tree is reached with a single composite query. At each
level of the tree, a query and a transform for a desired formlet
are generated. In certain examples, an FDL generator facili-
tates the tree-walking process to end up with a query and

15

25

40

45

28

transform that can be expressed in FDL. For example, a single
query and single transform representing a MPV are the output
of'the FDL tree structure navigation process.

Clinical applications today must be manually coded by
skilled programmers. Customizations are time-consuming
and usually involve consultation with the original provider to
develop the customized version of the application. Using
clinical element models, transforms, queries, and frames,
customization can be dynamically facilitated by a user. Thus,
certain examples provide dynamic, adaptive, yet structured
construction of forms, interfaces, and other applications.

For example, query criteria inform what shows up on the
rows of an MPYV, such as which patients do a clinician want to
see in MPV (e.g., all male patients, all patients in room 7,
etc.). One or more query snippets (e.g., one or more CEQL
snippets) are formed, where each query criteria has one or
more snippets of CEQL. A formlet informs columns of the
MPV, such as by specifying what data to show for those
patients and how the data should be shown. Each formlet
gives rise to a CETL snippet. A query is constructed from a
family of CEQL snippets and a family of CETL snippets to
retrieve data for a frame. The snippets are provided to the FDL
Generator to form an FDL script. The FDL script has a CEQL
section and a CETL section. Rather than forming a cohesive
whole, CEQL snippets and CETL snippets are formed by the
FDL generator into a CEQL query and a CETL query. The
FDL generator provides an FDL script has one CEQL query
and one CETL query. Data is then identified and retrieved and
provided to the application for presentation and use.

For example, a desired data set can include patients (male
or hypertensive) and in Room 7 (and/or other complex Bool-
ean logic). Male is a first CEQL snippet, hypertensive is a
second CEQL snippet, and Room 7 is a third CEQL snippet.
The snippets are passed into the FDL generator as a tree. The
FDL Generator takes the snippet tree and compiles to reduce
and create an abstract snippet tree (AST). The AST is merged
as specified by an associated predicate (e.g., OR, AND, XOR,
etc.). CETL is similar in that it uses reducers, but the structure
is a bit different. Instead of a tree, two lists (e.g., a top level
snippet list and a referenced snippets list) are provided. Some
example top level snippets include a patient name snippet, a
lab collection snippet, etc. An example CETL snippet can be
represented as follows:

CETL Snippet {
itemCollection LabCollection
from | in [type Lab] {
[referenced snippet Lab]

b}

Square brackets indicate that information is missing, and
additional processing is to be before the snippet can be legiti-
mate CETL, for example. The FDL generator looks for that
snippet in the list and inserts the missing information (e.g., if
it can be determined).

In this example, a collection of labs (a collection of type
Labs) is being formed, and, for each lab in the collection, a
referenced lab snippet is going to be processed.

CETL Snippet {
item Lab {
var labAlias = [type Lab]
Attribute Name = labAlias.name;
Attribute CollTime = labAlias.time;

US 9,081,875 B2

29

Thus, information in a Lab snippet is moved into to the
LabCollection snippet of this example.

CETL View
ItemCollection rows
from p in Frame 1 {
ItemCollection labCollection
from | in p.FrameChildren (took type Lab and converted it to
p.FrameChildren)
item Lab
Attribute Name - L.name
Attribute CollTime - l.time

The generator checks with a query to see if it supports that
type and, if it does not, instructs the query to support that type.
The query then determines a way to associate the type (e.g.,
type Lab to p.FrameChildren in LabCollection). Reference
snippets are reduced into their parents (e.g., using AST), and
type requirements are resolved by requesting the query to
rearrange itself so that it is also requesting that requested type.

FIG. 13 depicts an example presentation component 1310
of'a formlet including a lab collection snippet 1320, a patient
name snippet 1330, and an age snippet 1340. The example lab
collection snippet 1320 includes a CBC snippet 1321 and a
chem panel snippet 1322, for example.

In certain examples, an FDL Generator includes a CEQL
generator and a CETL generator. The CEQL generator takes
CEQL snippets, reduces them, and generates a final CEQL
query. The query is passed to the CETL generator to compile
each of the CETL snippets separately, reduce out the refer-
ence snippets (e.g., Lab), and then ensure that the query
supports all the reference types in the CETL. The FDL Gen-
erator creates an FDL script with the CEQL query and the
CETL query.

Then, the CEQL is passed through a CEQL compiler, and
the CETL is passed through a CETL compiler. The output of
the compilers includes transforms and a query. The trans-
forms generated by the CETL compiler are code (e.g.,
JAVA™ code) which can then be compiled to class files and
stored in content as class files. Then, when the transform is to
be run, the class files are loaded (e.g., into a Java Virtual
Machine (JVM)) and run. The query, when run, has, for
example, SQL inside of it (e.g., the CEQL compile generates
SQL). The SQL is run on a database to return a result set to be
used to populate a frame in a hierarchical structure. The
application requests that a particular transform be run on the
view. For example, a first transform on an MPV is a top level
grid, and a transform is applied to convert the grid into a data
structure that is directly analogous to a desired presentation
view.

A transform extracts information from a CEM and puts the
information in an appropriate place in the MPV view based on
one or more associated attributes. The transform provides a
data object that the MPV application can consume. Rows and
columns are bound to specified items, and the data populates
the rows and columns for the MPV application display.

Thus, in certain examples, rather than hardcoding logic in
an application, the application can easily leverage the under-
lying structure to create applications in a content-based for-
mat. Domain-specific compilers (e.g., CEQL, CETL) per-
form specific jobs and provide clinical configurability that
clinicians want to customize applications.

In certain examples, CETL can be written to allow input of
data into the system through a transform. A user can input
data (e.g., a comment) and ensure sure the data gets into the

10

25

35

40

45

30

right place (e.g., a CEM object with user context attached to
a comment object, time of day, location, etc.).

FIG. 14 illustrates an example system 1400 in which one or
more instances 1410 are provided for a frame 1420. The
frame 1420 is provided for a transform 1440 in conjunction
with CETL 1430 to generate a form view 1450. As shown in
the example of FIG. 14, one or more of an item tree view
1460, an ETL view 1470 and a clinical decision support
system (CDSS) view 1480 are also used to generate the form
view 1450.

FIG. 15 depicts an example client-server system configu-
ration 1500 to generate an application 1510 for execution via
the client. As shown in the example of FIG. 15, query criteria
1515 and formlet(s) 1520 are provided to an FDL generator
1525, which produces an FDL script 1530 and provides infor-
mation to an FDL compiler 1535 to generate FDL including
a CEQL component and a CETL component. A CEQL com-
piler 1540 processes the CEQL component and a CETL com-
piler 1545 processes the CETL component to provide an FDL
executable 1550 including both a query and a transform. The
query provides data for one or more frames 1555 and the
transform determines a view 1560 using the frame(s) data
1555 to provide the application 1510.

FIG. 16 illustrates an example client-server system con-
figuration 1600 to generate an application 1610 for execution
via the client. As shown in the example of FIG. 16, query
criteria 1615 and formlet(s) 1620 are provided to a server
including an FDL generator 1625 employing CEQL and
CETL to generate an FDL script 1630 related to the applica-
tion 1610. As shown in FIG. 16, the FDL generator 1625
provides information to a CEQL compiler 1635 and a CETL
compiler 1640 to generate a query 1645 and a transform 1650,
respectively. The query 1645 is provided to a CEQL reducer
1655 to reduce a plurality of query results into a single output,
resulting in a final query 1665. The transform 1650 is pro-
vided to a CETL reducer 1660 to reduce a plurality of trans-
form components, resulting in a final transform 1670. The
final query 1665 and final transform 1670 combine to produce
the FDL script 1630.

VII. Enabling and Improving Clinical User Experience Via
Formlets

Clinical information systems provide a large amount of
data in one or more databases and/or other data stores, often
in a particular defined form. For users and end-user systems,
however, there are widely varying data display needs, require-
ments, preferences, etc. Clinicians may need or desire to view
data stored in one or more databases in a specific, meaningful
way, depending on application. Clinician and/or application
requirements and/or preferences evolve, and certain
examples enable clinicians and supporting systems to react
quickly by providing new display forms for the data. Health-
care-related applications take a long time to develop and
stabilize and are typically disparate in ways in which the
applications present data. Certain examples provide compo-
nents that can be reused and configured at runtime to form one
or more applications and/or data views. Rather than display-
ing data in fragmented and/or out of context views, a patient’s
data can be woven together in a cohesive story via an inte-
grated user interface using formlets, for example.

Formlets provide context-aware levels of detail to a clinical
user and serve as a core building block to flexible, config-
urable clinical applications. Formlets provide a link of rich
capability between a clinical database and clinical users. For
example, formlets provide an ability to combine data fields
from multiple entities in a clinical database. Formlets provide
flexible ways to transform the data, including sorting, statis-
tics, hierarchical rollups, formatting, etc. Formlets provide a

US 9,081,875 B2

31

description of how to display transformed data via a user
interface, for example. Increasingly detailed views of the data
can be provided via the user interface driven by the formlet,
for example.

Using formlets to create an application, a large amount of
information is presented in a consumable way that easily
integrates into a user’s workflow and mental model. A form-
let-based interface allows the clinician to quickly make criti-
cal decisions, supports critical decision support and care col-
laboration, etc.

In certain examples, formlets are a core building block for
an array of clinical application capabilities, including to tell a
patient’s story, allow surfacing of clinical data at varying
levels of detail, provide clinicians with a runtime ability to
author new data displays, provide clinicians with a runtime
ability to configure existing applications, provide clinicians
with common components that they can view in varying
contexts, etc.

Using formlets, data can be tied together in an integrated,
meaningful way. For example, a formlet can tie data together
to tell a patient’s story while highlighting critical details. A
formlet can tie data together to summarize clinical unit opera-
tions, for example. A formlet can tie data together to summa-
rize a unit acuity level (e.g., accumulation of patient acuities
to determine overall score for a unit, etc.), for example. A
formlet can tie data together to allow analytics for higher-
level views of the data, for example. In certain examples, a
formlet can take raw data and apply clinical knowledge to
present the data in a way that is meaningful to a clinician.

FIG. 17 illustrates a flow diagram of an example method
1700 to provide model-specific query results to an applica-
tion. At block 1710, results returned by a query are received.
The query can include a functional language query to query
logical structures associated with objects, for example. The
query results include data represented as objects arranged
according to a data model, such as a detailed clinical model.
In certain examples, a user interface is provided to allow a
user to develop a query and transform.

At block 1720, a transform is applied to the query results.
The transform translates the query results into a form speci-
fied by a clinical application based on one or more data
models associated with the query results and one or more
criterion associated with the clinical application. In certain
examples, the transform is targetable to a plurality of appli-
cations. In certain examples, the transform is to translate the
data in the query results at least one of structurally and seman-
tically. In certain examples, the transform is implemented
using a navigation language and an emit language. In certain
examples, the query result set is a navigable tree structure of
objects and associated data.

At block 1730, relationships between objects are
accounted for in the query result set. At block 1740, the query
result set is provided to the clinical application. For example,
the query result set is provided as a frame to be used in a
clinical application form.

FIG. 18 illustrates a flow diagram of an example method
1800 to express model-specific queries. At block 1810, one or
more query criteria are accepted.

Atblock 1820, a query is formed based on the one or more
query criteria and information regarding a model used to
represent data being queried. In certain examples, the model
includes a detailed clinical model. In certain examples, the
query includes a functional language query to query logical
structures associated with objects. In certain examples, the
query includes a parameterized query. In certain examples, a
user interface is provided to allow a user to develop a query.

5

10

15

20

25

30

35

40

45

50

55

60

65

32

At block 1830, the query is applied to a plurality of avail-
able objects associated with the data being querying.

At block 1840, relationships between objects are
accounted for to generate a query result set. In certain
examples, the query result set is filtered according to one or
more criterion.

At block 1850, the query result set is provided. In certain
examples, the query result set is provided as a frame to be
used in a clinical application form. In certain examples, the
query result set is a navigable tree structure of objects and
associated data.

FIG. 19 illustrates a flow diagram of an example method
1900 to organize clinical data using models and frames. At
block 1910, data organized according to one or more detailed
clinical models is queried. In certain examples, the data to be
queried includes a plurality of content-based data items,
wherein a content-based system is to be compiled and support
changing data definitions.

At block 1920, a frame is formed from instances of the
queried data. In certain examples, each instance of data rep-
resents a hierarchical data structure. At block 1930, the datain
the frame is operated on to transform the frame into a com-
ponent to be used as a part of a clinical application.

In certain examples, a plurality of frames are combined
into a frameset in which operations between frames are
defined. In certain examples, the transformed frame is modi-
fied by at least one of an item tree, an extract-transform-load
operation, and clinical decision support to generate a form
view usable as part of a clinical application.

FIG. 20 illustrates a flow diagram of an example method
2000 to generate a formlet for a clinical application. At block
2010, one or more query criterion are received.

At block 2020, a query result is generated based on the one
or more query criterion.

At block 2030, a transform is generated to be applied to the
query result.

At block 2040, the transform is applied to the query result
to generate a formlet. In certain examples, a formlet includes
a set of one or more frames, each frame including one or more
objects and one or more relationships between the one or
more objects. In certain examples, a plurality of formlets are
combined to form a clinical application.

In certain examples, the query result is reduced to provide
a final query result, and the transform is reduced to provide a
final transform, wherein the formlet is generated using the
final transform and the final query result.

FIG. 21 is a block diagram of an example computer 2100
capable of executing instructions to implement the example
systems and methods described above. The computer 2100
can be, for example, a server, a personal computer, a mobile
phone (e.g., a cell phone), a personal digital assistant (PDA),
an Internet appliance, a set top box, or any other type of
computing device.

The computer 2100 of the instant example includes a pro-
cessor 2112. For example, the processor 2112 can be imple-
mented by one or more Intel® microprocessors from the
Pentium® family, the Itanium® family or the XScale® fam-
ily. Of course, other processors from other families are also
appropriate.

The processor 2112 is in communication with a main
memory including a volatile memory 2114 and a non-volatile
memory 2116 via abus 2118. The volatile memory 2114 may
be implemented by Synchronous Dynamic Random Access
Memory (SDRAM), Dynamic Random Access Memory
(DRAM), RAMBUS Dynamic Random Access Memory
(RDRAM) and/or any other type of random access memory
device. The non-volatile memory 2116 may be implemented

US 9,081,875 B2

33

by flash memory and/or any other desired type of memory
device. Access to the main memory 2114, 2116 is typically
controlled by a memory controller (not shown).

The computer 2100 also includes an interface circuit 2120.
The interface circuit 2120 may be implemented by any type of
interface standard, such as an Ethernet interface, a universal
serial bus (USB), and/or a PCI express interface.

One or more input devices 2122 are connected to the inter-
face circuit 2120. The input device(s) 2122 permit a user to
enter data and commands into the processor 2112. The input
device(s) can be implemented by, for example, a keyboard, a
mouse, atouchscreen, a track-pad, atrackball, isopoint and/or
a voice recognition system.

One or more output devices 2124 are also connected to the
interface circuit 2120. The output devices 2124 can be imple-
mented, for example, by display devices (e.g., a liquid crystal
display, a cathode ray tube display (CRT), a printer and/or
speakers). The interface circuit 2120, thus, typically includes
a graphics driver card.

The interface circuit 2120 also includes a communication
device (e.g., the request servicer) such as a modem or network
interface card to facilitate exchange of data with external
computers via a network 2126 (e.g., an Ethernet connection,
a digital subscriber line (DSL), a telephone line, coaxial
cable, a cellular telephone system, etc.).

The computer 2100 also includes one or more mass storage
devices 2128 for storing software and data. Examples of such
mass storage devices 2128 include floppy disk drives, hard
drive disks, compact disk drives, and digital versatile disk
(DVD) drives. The mass storage device 2128 may implement
the storage database, for example.

The coded instructions of FIG. 21 may be stored in the
mass storage device 2128, in the volatile memory 2114, in the
non-volatile memory 2116, and/or on a removable storage
medium such as a CD or DVD.

Various inventions have been described in sufficient detail
with a certain degree of particularity. It is understood to those
skilled in the art that the present disclosure of embodiments
has been made by way of examples only and that numerous
changes in the arrangement and combination of parts may be
resorted without departing from the spirit and scope of the
present disclosure as claimed. While the embodiments dis-
cussed herein may appear to include some limitations as to the
presentation of the information units, in terms of the format
and arrangement, the embodiments have applicability well
beyond such embodiment, which can be appreciated by those
skilled in the art. Accordingly, the scope of the present dis-
closure is defined by the appended claims rather than the
forgoing description of embodiments.

The invention claimed is:

1. A system comprising:

a clinical element query processor to generate, based on a
trigger associated with a clinical application, a query of
stored data organized according to one or more detailed
clinical models, the one or more detailed clinical models
structuring data and relationships between data, the
clinical element processor to process queried data result-
ing from the query to form a frame from instances of the
queried data based on relationships defined in the one or
more detailed clinical models, a plurality of frames
forming a frameset including frames and operations
between frames in the frameset, wherein one or more of
the plurality of frames changes based on data forming
the frame; and

a transformer to receive the frames of queried data in the
frameset and process the queried data and operations in
the frameset using the one or more detailed clinical

10

15

20

25

30

35

40

45

50

55

60

65

34

models to transform the frames in the frameset into an
executable component of a form view in the clinical
application, wherein the operations include a union of a
plurality of query results to form the queried data in at
least one frame.

2. A computer readable storage medium including com-
puter program code to be executed by a processor, the com-
puter program code, when executed, to implement a system
comprising:

a clinical element query processor to generate, based on a
trigger associated with a clinical application, a query of
stored data organized according to one or more detailed
clinical models, the one or more detailed clinical models
structuring data and relationships between data, the
clinical element processor to process queried data result-
ing from the query to form a frame from instances of the
queried data based on relationships defined in the one or
more detailed clinical models, a plurality of frames
forming a frameset including frames and operations
between frames in the frameset, wherein one or more of
the plurality of frames changes based on data forming
the frame; and

a transformer to receive the frames of queried data in the
frameset and process the queried data and operations in
the frameset using the one or more detailed clinical
models to transform the frames in the frameset into an
executable component of a form view in the clinical
application_, wherein the operations include a union of
aplurality of query results to form the queried data in at
least one frame.

3. A computer-implemented method to organize clinical

data using models and frames, the method comprising:
generating, using a processor and based on a trigger asso-
ciated with a clinical application, a query of stored data
organized according to one or more detailed clinical
models, the one or more detailed clinical models struc-
turing data and relationships between data;

processing, using the processor, queried data resulting
from the query to form a frame from instances of the
queried data based on relationships defined in the one or
more detailed clinical models, a plurality of frames
forming a frameset including frames and operations
between frames in the frameset, wherein one or more of
the plurality of frames changes based on data forming
the frame; and

operating on the queried data and operations in the
frameset using the one or more detailed clinical models
to transform the frames in the frameset into an execut-
able component of a form view in the clinical applica-
tion, wherein the operations include a union of a plural-
ity of query results to form the queried data in at least one
frame.

4. The system of claim 1, wherein the detailed clinical

models comprise clinical element models.

5. The system of claim 1, wherein at least one of parallel
queries and partitioned queries is supported using the
frameset.

6. The system of claim 1, wherein the transformed frame is
modified by at least one of an item tree, an extract-transform-
load operation, and clinical decision support to generate the
form view usable as part of the clinical application.

7. The system of claim 1, wherein the data to be queried
comprises a plurality of content-based data items, wherein a
content-based system is to be compiled and support changing
data definitions.

8. The system of claim 1, wherein each instance of data
represents a hierarchical data structure.

US 9,081,875 B2

35

9. The computer readable medium of claim 1, wherein at
least one of parallel queries and partitioned queries is sup-
ported using the frameset.

10. The computer readable medium of claim 2, wherein the
detailed clinical models comprise clinical element models.

11. The computer readable medium of claim 2, wherein the
transformed frame is modified by at least one of an item tree,
an extract-transform-load operation, and clinical decision
support to generate the form view usable as part of the clinical
application.

12. The computer readable medium of claim 2, wherein the
data to be queried comprises a plurality of content-based data
items, wherein a content-based system is to be compiled and
support changing data definitions.

13. The computer readable medium of claim 2, wherein
each instance of data represents a hierarchical data structure.

14. The computer readable medium of claim 2, further
comprising a user interface to facilitate user building of
detailed clinical models to be used to organize data and in
construction of queries.

15. The method of claim 3, further comprising modifying
the transformed frame by at least one of an item tree, an
extract-transform-load operation, and clinical decision sup-
port to generate the form view usable as part of the clinical
application.

16. The method of claim 3, wherein the data to be queried
comprises a plurality of content-based data items, wherein a
content-based system is to be compiled and support changing
data definitions.

17. The method of claim 3, wherein each instance of data
represents a hierarchical data structure.

#* #* #* #* #*

10

15

20

25

30

36

